<table>
<thead>
<tr>
<th>Time/Date</th>
<th>Venue/Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday, September 19, 2021</td>
<td>17:00-18:00</td>
</tr>
<tr>
<td>09:00-09:30</td>
<td>Auditorium</td>
</tr>
<tr>
<td>09:30-10:00</td>
<td>Auditorium</td>
</tr>
<tr>
<td>10:00-10:30</td>
<td>Auditorium</td>
</tr>
<tr>
<td>10:30-11:00</td>
<td>Auditorium</td>
</tr>
<tr>
<td>11:00-11:30</td>
<td>Auditorium</td>
</tr>
<tr>
<td>11:30-12:00</td>
<td>Auditorium</td>
</tr>
<tr>
<td>12:00-13:00</td>
<td>Lunch Break</td>
</tr>
<tr>
<td>13:00-14:00</td>
<td>Auditorium</td>
</tr>
<tr>
<td>14:00-15:00</td>
<td>Auditorium</td>
</tr>
<tr>
<td>15:00-16:00</td>
<td>Auditorium</td>
</tr>
<tr>
<td>16:00-17:00</td>
<td>Auditorium</td>
</tr>
<tr>
<td>17:00-18:00</td>
<td>Auditorium</td>
</tr>
<tr>
<td>Tuesday, September 20, 2021</td>
<td>09:00-09:30</td>
</tr>
<tr>
<td>09:30-10:00</td>
<td>Auditorium</td>
</tr>
<tr>
<td>10:00-10:30</td>
<td>Auditorium</td>
</tr>
<tr>
<td>10:30-11:00</td>
<td>Auditorium</td>
</tr>
<tr>
<td>11:00-12:00</td>
<td>Auditorium</td>
</tr>
<tr>
<td>12:00-13:00</td>
<td>Lunch Break</td>
</tr>
<tr>
<td>13:00-14:00</td>
<td>Auditorium</td>
</tr>
<tr>
<td>14:00-15:00</td>
<td>Auditorium</td>
</tr>
<tr>
<td>15:00-16:00</td>
<td>Auditorium</td>
</tr>
<tr>
<td>16:00-17:00</td>
<td>Auditorium</td>
</tr>
<tr>
<td>17:00-18:00</td>
<td>Auditorium</td>
</tr>
<tr>
<td>Wednesday, September 21, 2021</td>
<td>09:00-09:30</td>
</tr>
<tr>
<td>09:30-10:00</td>
<td>Auditorium</td>
</tr>
<tr>
<td>10:00-10:30</td>
<td>Auditorium</td>
</tr>
<tr>
<td>10:30-11:00</td>
<td>Auditorium</td>
</tr>
<tr>
<td>11:00-12:00</td>
<td>Auditorium</td>
</tr>
<tr>
<td>12:00-13:00</td>
<td>Lunch Break</td>
</tr>
<tr>
<td>13:00-14:00</td>
<td>Auditorium</td>
</tr>
<tr>
<td>14:00-15:00</td>
<td>Auditorium</td>
</tr>
<tr>
<td>15:00-16:00</td>
<td>Auditorium</td>
</tr>
<tr>
<td>16:00-17:00</td>
<td>Auditorium</td>
</tr>
<tr>
<td>17:00-18:00</td>
<td>Auditorium</td>
</tr>
</tbody>
</table>

Design, Typeset & Printed by Research Publishing (S) Pte Ltd
e: enquiries@rponline.com.sg
Welcome to Angers!

The 31st European Safety and Reliability Conference (ESREL 2021) is held in Angers, France on 19 – 23 September 2021. The annual European Safety and Reliability Conference (ESREL) is an international conference under the auspices of the European Safety and Reliability Association (ESRA).

It is with great pleasure that all the technical and organizing committees and their chairs welcome you here in the city of Angers. We are happy to say that ESREL 2021 can be seen, in its hybrid face-to-face and remote organization, as a double event even if we have tried to synchronize as well as possible so that everyone has the feeling to participate in the same event. The 2 key words of the organization were foresight and resilience.

For those lucky enough to be with us physically, a few words about the city of Angers. Angers, the 17th city in France located in the middle of the western province Région Pays de la Loire, enjoys a good reputation as a desirable place to live. Angers, capital of the Plantagenet dynasty and one of the intellectual hotspots of Europe during the reign of King René d’Anjou in the medieval era, presents an architecture that is both modern and steeped in history. One of its most prestigious monuments is the imposing castle built between the 13th and 14th centuries which houses the biggest medieval tapestry ensemble in the world, the Apocalypse Tapestry. Angers is also part of both the Val de Loire, a world heritage site, and the Loire-Anjou-Touraine regional nature park and opens the doors to the Loire castles. Angers and its surroundings are also well-known for its gastronomy and wines.

ESREL 2021 organized by Université d’Angers is arranged at the Angers Convention Center. The University of Angers can be seen as a young university (we celebrate its 50th anniversary this year) with a very long history (it was created in 1364 by King Charles V and recognized by the Pope in 1436). It trains more than 23,000 students and delivers more than 402 degrees in more than 100 specialties. The Angers Convention Center, totally renovated and located in the heart of the city, is a nice little setting that offers us a very friendly environment for our 5 days of work.

The rich program for this year’s conference includes 5 keynotes speakers with international excellence, 8 panels reflecting societal and methodological thoughts and challenges, and 15 sessions with 11 parallel tracks for a total of 593 papers, sharing new insights and ideas within different methods and application areas. Every presentation is filmed, broadcasted live and available for streaming on our platform. The traditional areas for the ESREL are continued, such as Accident and Incident Modeling, Risk Assessment, and Structural and System Reliability with an emphasis on Maintenance and Prognostic and Health Management topics. The program is also reflecting the multidisciplinary aspects of safety science, involving areas such as organizational and human factors, as well as resilience engineering. 24 special sessions with various opening topics proposed and organized by academic or industry researchers are presented in the program. This illustrates the enthusiasm of the community towards the ESREL event and we thank all the contributors at all levels.

We would like to underline the excellent level of support from the Pays de la Loire Region and the numerous local authorities of the Angers area. Thanks also to our sponsors and exhibitors.

Finally, the success of this event is already assured through the quality of your scientific proposal and your numerous participation in person and remotely. We hope for a richness of exchanges with great moments of conviviality. To all of you, authors and participants, we want to express our gratitude and thank you warmly.

Bruno Castanier
Marko Cepin
General Chair
General Co-Chair
Brief Contents

Message from General Chairs
Preface
Editorial by Christophe Bœchü
Acknowledgement
Organizers
Technical Committee
Program Committee Members
Panel Session — Monday, 20 September 2021
Panel Session — Tuesday, 21 September 2021

Plenary Lectures

Plenary I
Artificial Intelligence, Safety and Reliability: an old Story or a New Age?
Patrice Aknin
Directeur Scientifique Institut de Recherche Technologique SystemX

Plenary II
From Parameter Design to Data Science
C. F. Jeff Wu
Georgia Institute of Technology

Plenary III
Extending the Service Life of Civil and Marine Structures: Role of Monitoring, Probabilistic Life-cycle Management and Risk-based Decision Making Industry Perspective
Dan M. Frangopol
ATLSS Center, Lehigh University, Bethlehem, PA 18015-4729, USA

Plenary IV
Cognitive, Practical, Organisational and Regulatory Safety Challenges of A New Era
Jean-Christophe Le Coze
Safety researcher Institut national de l'environnement industriel et des risques (Ineris)

Plenary V
Safer by Design Concept
Catherine Mouneyrac
Professor in Ecotoxicology, Vice-Rector for research and valorization
(Université Catholique de l'Ouest-Angers, France)

Sponsors & Exhibitors

ESRA & Social Events

General Informations

Technical Programme

Day 1—Monday, 20 September 2021
Day 2—Tuesday, 21 September 2021
Day 3—Wednesday, 22 September 2021
Day 4—Thursday, 23 September 2021

Abstracts

Author Index

Programme Overview

Back Cover
Preface

ESREL 2021
Angers, France

This book contains close to 600 abstracts of the scientific and industry contributions from the 31st European Safety and Reliability Conference – ESREL 2021 –, held in Angers, France and organised by Université d’Angers and the European Safety and Reliability Association (ESRA). The full papers are published as Open Access papers on the following website: http://esrel2021.org/en/index.html.

For more than 30 years now, ESREL has been one of the key annual events for meetings and knowledge exchange in order to innovate for a better control of risks, and safety and optimization of the performance of socio-technological systems. The Conference has become well established in the international community, attracting a good mix of academic and industry participants that present and discuss subjects of interest and application across various industries in the fields of Safety, Reliability and Risk.

This conference comes to France for the fifth time (in addition to an earlier one in 1989 in La Baule). The last edition organized in France was in 2011 in Troyes. Université d’Angers can be seen as a young university (we celebrate its 50th anniversary this year) with a very long history (it was created in 1364 by King Charles V and recognized by the Pope in 1436). It trains more than 23,000 students and delivers more than 402 degrees in more than 100 specialties. Polytech Angers, the engineering school of Université d’Angers has developed undergraduate and graduate programs in quality, reliability and safety engineering and risk management.

This year the theme of the Conference is “Guaranteeing in an accelerating world”. The Conference covers a number of topics within safety, reliability and risk, and provides a forum for presentation and discussion of scientific papers covering theory, methods and applications to a wide range of sectors and problem areas.

This year, the Conference programme includes a total of 593 communications (454 full-papers and 139 abstracts) from prestigious authors coming from all over the world, and selected by the Technical Programme Committee to guarantee the quality and the consistency of the program.

The review process was mainly organised by the Technical Area Coordinators (most of which are the Chairmen of the ESRA Technical Committees) and the review process was made by a large number of anonymous reviewers which are gratefully acknowledged for their contributions to the improvement of quality of the papers. The members of the Technical Programme Committee (most of them members of the ESRA Technical Committees) have shared a great part of the review process and are important contributors to the Conference organization.

Bruno Castanier, Marko Cepin, David Bigaud and Christophe Bérenguier
Editors
Editorial by Christophe Béchu

Christophe BÉCHU
Mayor of Angers
President of Angers Loire Metropole

After the last editions held in Hannover and Milan, Angers is very honoured to host and support the 31st international ESREL conference.

In a world challenged by successive crises, risk management and security are fundamental areas of expertise and it is good to see that Angers will be the hub of meetings and knowledge exchange for the 600 industrial and academic specialists, with the purpose of being at the forefront of risk control and optimizing the performance of socio-technological systems.

The numerous topics covered during the conference will perfectly reflect the agility of our territory, in different fields like the Environment and the recent “Ecological transition meetings”, digitalization of the companies and the Angers business digital cluster such as the Smart City project conducted at the level of the Angers Loire Métropole urban community.

I am absolutely convinced that the setting of the Convention Centre, a symbol of Angers France’s greenest city’s DNA, will bring about high-quality scientific exchanges and give birth to fruitful partnerships between all the delegates.

And at a time when the tourism industry remains badly hit by the Covid situation, I am delighted to see that ESREL 2021’s organisers, with the help of Destination Angers, have shown agility and foresight in planning an event of that size, in a hybrid format. While staying in Angers no doubt all the participants will enjoy the quality of life, the heritage and all delights of our destination.
Acknowledgement

We would like to thank many people for their support and contributions to ESREL 2021.

We gratefully acknowledge the members of the ESREL 2018 Technical Programme Committee for their support of the scientific programme. We gratefully acknowledge the European Safety and Reliability Association Technical Committee Chairs and Co-Chairs, for volunteering their time and expertise to provide feedback as part of the contributed paper review process and for chairing the sessions at the conference. And last but not least we thank all authors and reviewers who have willingly given some of their time to ensure a high quality of papers for this conference. Every paper was reviewed by anonymous reviewers.

We would like to thank colleagues who organised special sessions of contributed papers and colleagues, who organised workshops and panels. We also thank the ESREL 2021 Plenary Speakers for offering their unique perspectives on safety and reliability at this conference.

The support of the ESREL 2021 sponsors and exhibitors is gratefully acknowledged.

Finally, we would like to thank the respective organisations for supporting the conference: It has been made possible by the close collaboration of LARIS research lab, Université d’Angers, Polytech Angers, Destination Angers and the European Safety and Reliability Association.

Bruno Castanier, Marko Cepin, David Bigaud, Christophe Bérenguer and Abdessamad Kobi
General Chairs and Chairs of the Technical and Organizational Committees
Organizers

Bruno CASTANIER
Conference General Chair
Laboratoire Angerien de Recherches en Ingénierie des Systèmes, Université d’Angers, France

Marko CEPIN
Conference General Co-Chair
University of Ljubljana, Slovenie

David BIGAUD
Technical Committee Chair
Laboratoire Angerien de Recherches en Ingénierie des Systèmes, Université d’Angers, France

Christophe BERENGUER
Technical Committee Chair
GIPSA-lab, Grenoble, France

Abdessamad KOBI
Local Organizing Committee Chair
Laboratoire Angerien de Recherches en Ingénierie des Systèmes, Université d’Angers, France

Laurent SAINTIS
Local Organizing Committee Co-Chair
Laboratoire Angerien de Recherches en Ingénierie des Systèmes, Université d’Angers, France

Marie-Françoise GERARD
Local Organizing Committee Co-Chair
Laboratoire Angerien de Recherches en Ingénierie des Systèmes, Université d’Angers, France

Zoë NANTY CAIL
Assistant & Secretary
Laboratoire Angerien de Recherches en Ingénierie des Systèmes, Université d’Angers, France

Wenjin ZHU
Organizing Committee
School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, China
Technical Committee

Abrahamsen Eirik B., University of Stavanger, Norway
Adey Bryan T., ETH Zürich, Switzerland
Al Mastry Zeina, FEMTO-ST, École Nationale Supérieure de Mécanique et des Microtechniques, France
Ale Bos, Delft University of Technology, Netherlands
Alibrandi Umberto, Aarhus university, Denmark
Andrews John, University of Nottingham, United Kingdom
Anjos Miguel, The University of Edinburgh, United Kingdom
Antoni Marc, UIC, France
Aven Terje, University of Stavanger (UiS), Norway
Bazaidi Piero, Politecnico di Milano — Polimi, Department of Energy, Italy
Barreau Mihaela, LARIS — Université d’Angers, France
Barros Anne, CentraleSupélec – Paris Saclay University, France
Barthelmy Laurent, ÉNSM – IML, France
Bastien Rob, Eindhoven University, Netherlands
Bastidas-Arteaga Emilio, La Rochelle University, France
Batteux Michel, iRT System X, France
Beaurepaire Pierre, SIGMA Clermont, France
Ben Abdessalem Anis, LARIS — Université d’Angers, France
Beronguerre Christophe, Univ. Grenoble Alpes – Grenoble INP, France
Bigaud David, LARIS — Université d’Angers, France
Blondet Gaetan, Phimeca Engineering, France
Bonato Marco, Valeo Thermal Systems, France
Borgonovo Emanuele, Università Bocconi, Italy
Botteja Deshui, Norway
Bouillaut Laurent, Université Gustave Eiffel, France
Brizzee Nicolas, University of Lorraine, CRAN UMR 7039, France
Bris Radim, VSB Technical University of Ostrava, Czechia
Brisaud Florent, RICE GRTgaz, France
Brito Mario, University of Southampton, United Kingdom
Castanier Bruno, LARIS — Université d’Angers, France
Castro Inma T., University of Extremadura, Spain
Cepin Marko, University of Ljubljana, Slovenia
Chatti Nazzar, LARIS — Université d’Angers, France
Chiocchetti Eugenio, Mediterranean University of Reggio Calabria, Italy
Cito Pasquale, University of Naples Federico II, Italy
Coelho Mario, University of Minho, Portugal
Coit David, Department of Industrial & Systems Engineering, Rutgers University, United States
Contesto Alessandro, University of Illinois at Urbana-Champaign, United States
Coxarzi Valerio, University of Bologna, Italy
Dalla Vedova Matteo Davide Lorenzo, Politecnico di Torino — polito, Italy
Delaverne Florien, LARIS — Université d’Angers, France
Delmas Kevin, ONERA, France
Dersin Pierre, ALSTOM Transpot, France
Di Mauro Francesco, Delft University of Technology, Netherlands
Di Nardo Mario, Università di Napoli “Federico II”, Italy
Do Phuc, Lorraine university, France
Fang Yiping, CentraleSupélec – Paris Saclay University, France
Fink Olga, ETH-Zurich, Switzerland
Flage Roger, University of Stavanger, Norway
Fouladirad Mitra, Institut Charles Delaunay – LM2S, UMR 6281, CNRS, Univ. de Technologie de Troyes, France
Gardoni Paolo, University of Illinois at Urbana-Champaign, United States
Gaudoin Olivier, Univ. Grenoble Alpes, France
Giorgio Massimiliano, Università degli Studi di Napoli Federico II, Italy
Grall Antoine, Université de technologie de Troyes, France
Han David, The University of Texas at San Antonio – UTSA, United States
Hassef Henrik, Division of risk management and societal safety, Lund University, Sweden
Hazzin Marcelo, Universidade Federal de Pernambuco (UFPE), Brazil
Herrera Ivanhoe, Norwegian University of Science and Technology, Trondheim (NTNU), Norway
Hosni Jean-Michel, PRINCIPIA, France
Houe Ngouna Raymond, Toulouse INP, ENIT, France
Jiang Benoit, Université de Lorraine, France
Johnsen Stig Ole, SINTEF Digital, Norway
Judic Jean-Marc, Faurecia Seating, France
Kammoun Omar, Delft University of Technology, Netherlands
Khalid Alia, Ryerson University, Canada
Khebbache Selma, IRT SystemX, France
Kiriopoulos Konstantinos, University of South Australia, Australia
Knapsdal Torger, Western Norway University of Applied Sciences, Haugesund & University of Stavanger, Norway
Kongwivik Thord, Norwegian University of Science and Technology, Norway
Konstandinidou Myrto, NCSR DEMOKritos, Greece
Kopustinskas Vytautas, Joint Research Centre, Italy
Kosgodagan Aloys, Université Catholique de l’Ouest, France
Lambi Luca, Department of engineering – university of perugia, Italy
Landucci Gabrielle, Università di Pisa — UNIFI, Italy
Lemenand Thierry, LARIS — Université d’Angers, France
Leppäaho Oskari, Véto GEEDS, France
Leray Philippe, Université de Nantes, France
Lever Mario Chiara, TU Dublin, Ireland
Levitin Gregory, Israel Electric Corporation, Israel
Levrat Eric, université de Lorraine / CRAN, France
Li Yan-Fu, Department of Industrial Engineering, Tsinghua University, China
Li Li, Department of Industrial Engineering, Tsinghua University, China
Liu Lirong, Beijing Institute of Technology, China
Liu Yiliu, Norwegian University of Science and Technology, Norway
Markova Jana, Czech Technical University in Prague — ČVUT – Klokner Institute, Czechia
Martorell Sebastián, Universidad Politècnica de Valencia, Spain
Medjaher Kamel, INPT-ENIT, University of Toulouse, France
Mendoza Jorge, HEC Montréal, Canada
Mock Ralf, Step Commerce AG, Switzerland
Mödden Heinrich, German Machine Tool Builders’ Association (VDW), Germany
Monica Luigi, Istituto Institute – Rome, Italy
Morales Napoles Oswaldo, TUI Delft, Netherlands
Moro Tanguy, Institut de Recherche Technologique Jules Verne, France
Mosalam Khalid M., University of California at Berkeley, United States
Mosleh Ali, University of California Los Angeles, United States
Technical Committee

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution/Nationality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myklebust Thor</td>
<td>SINTEF Digital, Norway</td>
</tr>
<tr>
<td>Nguyen Thi-Phuong-Khanh</td>
<td>Toulouse INP, ENIT, France</td>
</tr>
<tr>
<td>Nogal Maria</td>
<td>Drift University of Technology, Netherlands</td>
</tr>
<tr>
<td>Pakrashi Vikram</td>
<td>University College Dublin, Ireland</td>
</tr>
<tr>
<td>Pannier Marie-Lise</td>
<td>Université d’Angers, France</td>
</tr>
<tr>
<td>Perdrau Richard</td>
<td>ESEO, France</td>
</tr>
<tr>
<td>Peres Francois</td>
<td>ENIT, France</td>
</tr>
<tr>
<td>Podofillini Luca</td>
<td>Paul Scherrer Institut (PSD), Switzerland</td>
</tr>
<tr>
<td>Ponchet Darupri Amolou</td>
<td>Université de Technologie de Compiegne, France</td>
</tr>
<tr>
<td>Prosvirnova Tatiana</td>
<td>ONERA, France</td>
</tr>
<tr>
<td>Ramos Marilia</td>
<td>University of California Los Angeles, United States</td>
</tr>
<tr>
<td>Remenyte-Precht Rasa</td>
<td>University of Nottingham, United Kingdom</td>
</tr>
<tr>
<td>Rey Valentine</td>
<td>Université de Nantes – GeM/IUMIL, France</td>
</tr>
<tr>
<td>Roganud Eric</td>
<td>École des Mines de Paris, France</td>
</tr>
<tr>
<td>Riabi Hassen</td>
<td>Université d’Angers, France</td>
</tr>
<tr>
<td>Saints Laurent</td>
<td>Université d’Angers, France</td>
</tr>
<tr>
<td>Sansavini Giovanni</td>
<td>ETH-Zürich, Switzerland</td>
</tr>
<tr>
<td>Sassid Issad</td>
<td>i-Trans, Rainium, France</td>
</tr>
<tr>
<td>Schauer Stefan</td>
<td>AIT Austrian Institute of Technology GmbH, Austria</td>
</tr>
<tr>
<td>Schoefs Franck</td>
<td>Université de Nantes – GeM/IUMIL, France</td>
</tr>
<tr>
<td>Selvik Jon</td>
<td>Tømmeraas University of Stavanger, Norway</td>
</tr>
<tr>
<td>Severengiz Semih</td>
<td>Hochschule Bochum, Germany</td>
</tr>
<tr>
<td>Sharlee Mahroom</td>
<td>Cranfield University, United Kingdom</td>
</tr>
<tr>
<td>Sun Mu-Xia</td>
<td>Department of Industrial Engineering, Tsinghua University, China</td>
</tr>
<tr>
<td>Taenier Jean-Marc</td>
<td>Université Grenoble Alpes, INRAE, LR ETNA, France</td>
</tr>
<tr>
<td>Tanguy Christian</td>
<td>Orange, France</td>
</tr>
<tr>
<td>Thieme Christoph A.</td>
<td>Norwegian University of Science and Technology, Norway</td>
</tr>
<tr>
<td>Tripica Teodo</td>
<td>t-LARIS — Université d’Angers, France</td>
</tr>
<tr>
<td>Tsai Kocck Leung</td>
<td>Virginia Tech, United States</td>
</tr>
<tr>
<td>Tubis Agnieszka</td>
<td>Wroclaw University of Science and Technology, Poland</td>
</tr>
<tr>
<td>Ulm Ingrid B.</td>
<td>Norwegian University of Science and Technology, Norway</td>
</tr>
<tr>
<td>Valis David</td>
<td>Fakulta Vojenských technologií — Univerzita Obrany v Brně, Czechia</td>
</tr>
<tr>
<td>Van Golder Pieter</td>
<td>Delft University of Technology, Netherlands</td>
</tr>
<tr>
<td>Versch Sylwia</td>
<td>LARIS — Université d’Angers, France</td>
</tr>
<tr>
<td>Virote Zdenek</td>
<td>University of Defence, Czechia</td>
</tr>
<tr>
<td>Vu Hai Carh</td>
<td>University of Technology of Compiegne, France</td>
</tr>
<tr>
<td>Walls Lesley</td>
<td>University of Strathclyde – Glasgow, United Kingdom</td>
</tr>
<tr>
<td>Wang Jin</td>
<td>Liverpool John Moores University, United Kingdom</td>
</tr>
<tr>
<td>Werbieszko Sylvia</td>
<td>Wrocław University of Science and Technology, Poland</td>
</tr>
<tr>
<td>Xia Min</td>
<td>City University of Hong Kong, China</td>
</tr>
<tr>
<td>Yalamas Thierry</td>
<td>Phimeca Engineering, France</td>
</tr>
<tr>
<td>Ylomen Marja</td>
<td>VTT Technical Research, Finland</td>
</tr>
<tr>
<td>Yuza Loyo Jose Maria</td>
<td>Universidad de Zaragoza, Spain</td>
</tr>
<tr>
<td>Zeng Zhiquo</td>
<td>CentraleSupélec — Paris Saclay University, France</td>
</tr>
<tr>
<td>Zerhouni Noureddine</td>
<td>FEMTO-ST, École Nationale Supérieure de Mécanique et des Microtechniques, France</td>
</tr>
<tr>
<td>Zio Enrico</td>
<td>Politecnico di Milano, Italy</td>
</tr>
</tbody>
</table>
Program Committee Members

<table>
<thead>
<tr>
<th>Category</th>
<th>Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accident and Incident Modeling</td>
<td>Stig O. Johnsen, Nicola Paltirini</td>
</tr>
<tr>
<td>Asset management</td>
<td>Sylwia Werbińska-Wojciechowska</td>
</tr>
<tr>
<td>Cyber Physical Systems</td>
<td>Benoit Iung</td>
</tr>
<tr>
<td>Economic Analysis in Risk Management</td>
<td>Eirik B Abrahamsen</td>
</tr>
<tr>
<td>Foundational Issues in Risk Assessment and Management</td>
<td>Terje Aven, Enrico Zio</td>
</tr>
<tr>
<td>Human Factors and Human Reliability</td>
<td>Luca Podofillini, Chiara Leva</td>
</tr>
<tr>
<td>Innovative Computing Technologies in Reliability and Safety</td>
<td>Radim Bris, Christian Tanguy</td>
</tr>
<tr>
<td>Maintenance Modeling and Applications</td>
<td>Christophe Berenguier, Mitra Fouladizad</td>
</tr>
<tr>
<td>Mathematical Methods in Reliability and Safety</td>
<td>John Andrews, Nicolae Brinzei</td>
</tr>
<tr>
<td>Mechanical and Structural Reliability</td>
<td>Hassen Riahi</td>
</tr>
<tr>
<td>Organizational Factors and Safety Culture</td>
<td>Marja Ylonen, Trond Kongsvik</td>
</tr>
<tr>
<td>Prognostics and System Health Management</td>
<td>Piero Baraldi, Enrico Zio</td>
</tr>
<tr>
<td>Resilience Engineering</td>
<td>Eric Rigaud, Ivonne A. Herrera</td>
</tr>
<tr>
<td>Risk Assessment</td>
<td>Marko Cepin, Henrik Hassel</td>
</tr>
<tr>
<td>Risk Management</td>
<td>Lesley Walls, Marcelo Hazin, David Vals</td>
</tr>
<tr>
<td>Software Reliability</td>
<td>Technical Committee</td>
</tr>
<tr>
<td>Structural Reliability</td>
<td>Jana Markova, Martin Knejsa</td>
</tr>
<tr>
<td>System Reliability</td>
<td>Massimiliano Giorgio Unina</td>
</tr>
<tr>
<td>Uncertainty Analysis</td>
<td>Emanuele Borgonovo, Roger Flage</td>
</tr>
</tbody>
</table>
Applications Areas

<table>
<thead>
<tr>
<th>Applications Areas</th>
<th>Program Committee Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeronautics and Aerospace</td>
<td>Matteo Davide Lorenzo Dalla Vedova</td>
</tr>
<tr>
<td>Automotive Industry</td>
<td>Semih Severengiz</td>
</tr>
<tr>
<td>Autonomous Driving Safety</td>
<td>Thor Myklebust</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>Oswaldo Morales Napoles</td>
</tr>
<tr>
<td>Critical Infrastructures</td>
<td>Giovanni Sansavini, Enrico Zio</td>
</tr>
<tr>
<td>Energy</td>
<td>Michalis Christou, Mahmood Shafie</td>
</tr>
<tr>
<td>Healthcare and Medical Industry</td>
<td>Yiliu Liu, Rasa Rementyte-Precott</td>
</tr>
<tr>
<td>Land Transportation</td>
<td>Olga Fink, Pierre Dersin</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>Eric Levrat, Francois Peres</td>
</tr>
<tr>
<td>Maritime and Offshore Technology</td>
<td>Jin Wang, Ingrid B. Utne, Mario P Brito</td>
</tr>
<tr>
<td>Natural Hazards</td>
<td>Technical Committee</td>
</tr>
<tr>
<td>Nuclear Industry</td>
<td>Sebastian Martorell, Francesco Dimaso</td>
</tr>
<tr>
<td>Occupational Safety</td>
<td>Ben Ale, Genserik Reniers</td>
</tr>
<tr>
<td>Oil and Gas Industry</td>
<td>Deshai Botheju</td>
</tr>
<tr>
<td>Railway Industry</td>
<td>Insaf SASSI</td>
</tr>
<tr>
<td>Renewable Energy Industry</td>
<td>Thierry Lemenand</td>
</tr>
<tr>
<td>Security</td>
<td>Zdenek Vintr, Genserik Reniers</td>
</tr>
<tr>
<td>Smart Cities and Systems</td>
<td>Technical Committee</td>
</tr>
<tr>
<td>Socio-Technical-Economic Systems</td>
<td>Technical Committee</td>
</tr>
</tbody>
</table>
Special Sessions

<table>
<thead>
<tr>
<th>Topic</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accelerated Life Testing & Accelerated Degradation Testing</td>
<td>David Han</td>
</tr>
<tr>
<td>Adaptative Optimization of Maintenance Strategies for Complex Systems</td>
<td>Selma Khebbache, Kamal Medjaher, Miguel Anjos</td>
</tr>
<tr>
<td>Advanced maintenance decision-making for complex systems</td>
<td>Jorge Mendoza, Hai-Canh Vu, Florian Delavernhe</td>
</tr>
<tr>
<td>Advancements in Resilience Engineering of Critical Infrastructures</td>
<td>Rasa Remenyte-Prescott, Giovanni Sansavini</td>
</tr>
<tr>
<td>AI for safe, secure and dependable operation of complex Systems</td>
<td>Pierre Dersin, Olga Fink, Christophe Bérenguer</td>
</tr>
<tr>
<td>Artificial intelligence for reliability assessment and maintenance decision-making</td>
<td>Christophe Bérenguer, Phuc Do</td>
</tr>
<tr>
<td>Autonomous system safety, risk, and security</td>
<td>Maria Ramos, Christoph A. Thieme, Ingrid B. Utne, Ali Mosleh</td>
</tr>
<tr>
<td>Balanced System Reliability</td>
<td>Cui Lirong</td>
</tr>
<tr>
<td>Bayesian network for reliability modelling and maintenance optimisation</td>
<td>Laurent Bouillaut, Philippe Leray</td>
</tr>
<tr>
<td>Case Studies on Predictive Reliability: an Industrial Perspective</td>
<td>Marco Bonato</td>
</tr>
<tr>
<td>Decision Science for resilience</td>
<td>Omar Kammouh, Maria Nogal, Bryan T. Adey</td>
</tr>
<tr>
<td>Degradation analysis and modelling for predictive maintenance</td>
<td>Olivier Gaudoin</td>
</tr>
<tr>
<td>Digital twin approach in maintenance and safety engineering</td>
<td>Yiliu Liu, Baoping Cai</td>
</tr>
<tr>
<td>Effectiveness, management and reliability of natural risks reduction measures and strategies</td>
<td>Jean-Marc Tacnet</td>
</tr>
<tr>
<td>Electromagnetic Risk Management</td>
<td>Richard Perdriau, Oskari Leppäaho</td>
</tr>
<tr>
<td>Flexible Tolerancing Analysis of Complex Structures and Assemblies</td>
<td>Tanguy Moro, Jean-Marc Judic, Pierre Beaurepaire</td>
</tr>
<tr>
<td>Health monitoring and predictive maintenance of offshore systems on intégré Reliability of offshore renewable energies: from the design to the service life</td>
<td>Gaétan Blondet, Sylvain Girard, Thierry Yalamas, Jean-Michel Heurtier</td>
</tr>
<tr>
<td>Human factor in the smart industry</td>
<td>Luigi Monica, Mario Di Nardo</td>
</tr>
<tr>
<td>Program Committee Members</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Program Committee Members</td>
<td></td>
</tr>
<tr>
<td>Amélie Ponchet Durupt, Antoine Grall</td>
<td></td>
</tr>
<tr>
<td>Inma T. Castro</td>
<td></td>
</tr>
<tr>
<td>Michel Batteux, Tatiana Prosvirnova, Kevin Delmas</td>
<td></td>
</tr>
<tr>
<td>Nicolae Brutei, John Andrews</td>
<td></td>
</tr>
<tr>
<td>Laurent Bouillaut, Marc Antoni</td>
<td></td>
</tr>
<tr>
<td>Mário Coelho, Emilio Bastidas-Arteaga</td>
<td></td>
</tr>
<tr>
<td>Thi-Phuong-Khanh Nguyen, Zeina Almasar, Raymond Houergounou, Kamal Medjaher, Noureddine Zerhouni</td>
<td></td>
</tr>
<tr>
<td>Christian Tanguy</td>
<td></td>
</tr>
<tr>
<td>Zheng-Lin Liang, Mu-Xia Sun, David Cott, Yan-Fu Li</td>
<td></td>
</tr>
<tr>
<td>Florent Brissaud, Jon Selvik</td>
<td></td>
</tr>
<tr>
<td>Luca Landi, Heinrich Moedden</td>
<td></td>
</tr>
<tr>
<td>Anne Barros, Yiping Fang, Zhiguo Zeng</td>
<td></td>
</tr>
<tr>
<td>Konstantinos Kirytopoulos, Myrto Konstandinidou, Tonja Knapstad</td>
<td></td>
</tr>
<tr>
<td>Umberto Alibrandi, Paolo Gardoni, Khalid M. Mosalam</td>
<td></td>
</tr>
<tr>
<td>Min Xie, Kwok Leong Tsui</td>
<td></td>
</tr>
<tr>
<td>Pasquale Cito, Eugenio Chioccarelli</td>
<td></td>
</tr>
<tr>
<td>Alessandro Contento, Paolo Gardoni, Umberto Alibrandi</td>
<td></td>
</tr>
</tbody>
</table>
Panel Sessions

Monday, September 20, 2021 / 14:00–15:00 hrs — [Parallel]

Venue
Auditorium

Panel – I
RAM and PHM Synergy

Organizer
Dersin, Pierre, pierre.dersin@alstomgroup.com — ALSTOM, France, and Luleå University of Technology (LTU), Sweden

Panel List
- Kumar, Uday (Prof.), uday.kumar@ltu.se — Luleå University of Technology (LTU), Sweden
- Tinga, Tiedo (Prof.), t.tinga@utwente.nl — University of Twente, The Netherlands
- Fink, Olga (Prof.), fink@ibi.baug.ethz.ch — ETH-Zürich, Switzerland
- Prof. dr. Marielle Stoelinga, Professor of risk management for high-tech systems, University of Twente, The Netherlands.

Abstract

RAM (Reliability-Availability-Maintainability) Engineering is by now a mature discipline, tracing its roots back to the immediate post-World War II period. It deals with statistical properties of a population of assets, characterizes their failure modes and aims at optimizing the design of future equipment based on past experience, analysis and tests. It takes into account maintenance and operations context and also provides inputs to the elaboration of maintenance plans and logistic support.

RAM analysis at the design stage is typically model-based (while exploiting past data), and RAM Monitoring is data-driven but may be supported by models.

PHM (Prognostics & Health Management) emerged at the turn of the 21st century. It deals typically with individual assets which are equipped with sensors and aims at monitoring their health and its progressive degradation, so as to diagnose impending failures, and to avoid them by taking preventive actions when possible. These main pillars of PHM are detection, diagnostics and prognostics.

PHM relies on model-based, data-driven or hybrid approaches. Typically the two communities are separate for historical reasons. The question we would like to raise here is: can the two communities both benefit from stronger links?

For example, the first stage in developing a PHM system is a failure mode, mechanisms and effects analysis (FMMEA), which is typically a RAM task. And one key expected outcome from a PHM strategy is increased availability.

While RAM focuses on estimating the probability distribution of the lifetime of a population, in a given environment with an average mission profile, PHM, on the other hand, focuses on predicting the rate of function loss for an individual asset, with a customized profile and context. RAM deals with discrete events (failures), and metrics such as failure rate and MTTF or MRL (mean residual life); while PHM deals with continuous, degradation data, and metrics such as health indicators (or indices) and RUL (remaining useful life). While RAM leads to maintenance decisions (such as spares management and determination of maintenance intervals) for a whole fleet, PHM supports maintenance decisions for one individual asset. The ‘M’ (maintainability) in RAM includes testability, which addresses the ability to detect and diagnose faults—an essential concern for PHM.

The IoT paves the way for individualized monitoring. Both RAM and PHM can be supported by machine learning techniques along with classical statistics. Therefore the borders between the two disciplines may be getting blurred.

Can cross-fertilization occur in both directions? For instance, can PHM not draw on the considerable body of knowledge accumulated by RAM specialists over decades (including the venerable theories of the ‘founding fathers’, such as Barlow & Proschan, or Gnedenko, which PHM engineers often are not familiar with).

xv
And at the same time, cannot RAM Engineering be rejuvenated by machine learning algorithms and perspectives (which often RAM Engineers do not necessarily have in their toolbox)?

Should corporate RAMS departments give way to RAM/PHM departments? And what are the implications for higher education and research?

Venue

Atrium 2

Panel – II

Aero 1: Reliability & Safety in Aerospace & Space — State of the Art and Evolutions

Moderators

Jean Louis Deschanels

Abstract

Reliability and Safety are two key words when it comes to fly. Airplanes are intrinsically safe, much more than any other transportation mode and are indeed the safest transportation mean. How do the industry reached that level of engineering expertise to make the dream of Icare becoming an almost daily routine.

A second panel, on 21rst, 2pm will address the newest, often disruptive development of novel platforms, such as Urban Air Mobility, Air Taxi, etc and the importance of Safety / Reliability culture from early design phase.

Venue

Espace grand angle 2

Panel – III

Autonomous system safety, risk, and security

Moderators

Thieme, Christoph A., christoph.thieme@ntnu.no — Norwegian University of Science and Technology

Ramos, Marilia, marilia.ramos@ucla.edu — University of California Los Angeles

Utne, Ingrid B., ingrid.b.utne@ntnu.no — Norwegian University of Science and Technology

Mosleh, Ali, mosleh@ucla.edu — University of California Los Angeles

Description

This special session will be organized in the format of a panel for discussing autonomous systems safety, risk, and security (SRS). The session will discuss the results of the First International Workshop on Autonomous Systems Safety (IWASS), as well as early findings of the 2nd IWASS. Key experts will be invited to discuss autonomous systems SRS from an interdisciplinary and cross-industrial perspective.

The panel is expected to present the results from IWASS discussions and make them more accessible to a wider audience. Participants may present additional thoughts on the discussions and workshop outcomes.

Motivation

The First IWASS was organized by the Department of Marine Technology at the Norwegian University of Science and Technology (NTNU) and the B. John Garrick Institute for the Risk Sciences at the University of California, Los Angeles (UCLA). IWASS took place in Trondheim, Norway, from March 11th to 13th, 2019. The 47 participants were selected and individually invited to the workshop only and included 47. The subject matter experts came from Europe, Asia, Australia, and the U.S.A., working in both academia and industry. The 2nd IWASS is planned as a virtual event to be held in April 2021.

Autonomous systems on land, in the air and on the sea are being widely applied. The safety issues concerning these systems are the focus of many research projects and publications, yet each industry and academic field attempts to solve arising safety issues on their own. Given the identifiable similarities, could common solutions be envisioned and developed? Answering these and related questions motivates this panel as an opportunity for an interdisciplinary discussion on risks, challenges, and foremost potential solutions concerning safe autonomous systems and operations.
Objective

This session aims at using the results of the First IW ASS, early findings of the 2nd IW ASS, and participants expertise to discuss autonomous systems SRS, identifying key challenges, and possible solutions for those.

Venue
Panoramique

Panel – IV
Digital twins to improve decision making in the built environment
Organizer
Peter El Hajj – Head of UK National Digital Twin Programme Delivery
Panel List
Sebastien Coulon – Cofounder/COO – SpinalCom
Emmanuel Di Giacomo – EMEA BIM & AEC Ecosystem Business Development
Mary Juteau – Responsable du Service Information Géographique - Angers Loire Métropole

Description

Digital twins still mean different things to different people, but all descriptions seem to share a common characteristic — connection between the physical and the digital worlds. This panel aims to explore the opportunities provided by digital twins in the built environment. Discussions will address examples, challenges and guiding principles of digital twins like federation, trust and purpose.

Venue
Auditorium

Panel – V
TC12 on risk analysis and safety of large structures and component
Moderators
Leksandar Sedmak, asedmak@mas.bg.ac.rs — Faculty of Mechanical Engineering, University of Belgrade, Serbia
Snežana Kirin, Innovation Center of the Faculty of Mechanical Engineering, Belgrade, Serbia
Nenad Milošević, Innovation Center of the Faculty of Mechanical Engineering, Belgrade, Serbia

Abstract

Recent Projects include:

1. The European “FASTCOLD – FAtigue SIrength of COLD formed structural steel details” aims to develop design fatigue curves of details made of cold-formed profiles.

The ESIS TC12 is organized in several working groups: WG1 on Engineering Structures and Technologies, Chairs José Antonio Correia, Gregorž Lesiuk & Pedro Montenegro, WG2 on Safety of Technical Systems, Chairs Aleksandar Sedmak & Vladimir Moskvichev, WG3 on Reliability and Probabilistic Approaches, Chairs: Miguel Calvente & Shun-Peng Zhu, WG4 on Environmental effect on structural integrity, Chair Elena Federova, and WG5 on Structural integrity of composite materials and structures, Chairs Lothar Knoll & Wojciech Blazejewski.
Panel Sessions

Tuesday, September 21, 2021 / 14:00–15:00 hrs — [Parallel]

<table>
<thead>
<tr>
<th>Venue</th>
<th>Atrium 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel – VI</td>
<td>Aero 2: Urban Air Mobility and newest Aerospace disruptive challenges</td>
</tr>
<tr>
<td>Moderators</td>
<td>Clement Audard, from EASA European Union Aviation Safety Agency</td>
</tr>
</tbody>
</table>

While Urban Air Mobility projects are booming, the aims of this session is to recall the fundamentals when it comes to carry passengers: safety first ... How could the new players, who do not necessarily have aerospace expertise and so the benefits from the pedigree of century of experience, address those topics incl. newest technologies, such as Lio Ion Batteries, hydrogen, autonomous flights (non-piloted, ...) etc.

<table>
<thead>
<tr>
<th>Venue</th>
<th>Espace grand angle 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel – VII</td>
<td>Model-Based Safety Assessment approach: Increase trust in models</td>
</tr>
<tr>
<td>Organizer</td>
<td>MILCENT Frédéric, frederic.milcent@naval-group.com — Naval Group</td>
</tr>
<tr>
<td>Panel List</td>
<td>BATTEUX Michel, Michel.Batteux@irt-systemx.fr — IRT SystemX</td>
</tr>
<tr>
<td></td>
<td>DE BOSSOREILLE Xavier, xavier.debossoreille@apsys-airbus.com — APSYS AIRBUS</td>
</tr>
<tr>
<td></td>
<td>PROSVIRNOVA Tatiana, Tatiana.Prosvirnova@onera.fr — ONERA</td>
</tr>
</tbody>
</table>

Description

Model-Based Safety Assessment (MBSA) exists since many years now and the advantages of this approach are well known. However, modelers are sometimes confronted with the same old questions: Is the model really valid? Are the results correct? Those questions often take their origins in a lack of knowledge of the MBSA approach but reveal an important issue: how to prove the validity of models and results?

The following topics will be addressed:

1. Modeling process
2. Training & Communication
3. Model representativeness
4. Model-Checking
5. Tools & Software
6. Documentation & Capitalization

Motivation

The aim of this panel session is to give leads to modelers to prove the validity of their models. An example of modeling process will be proposed. Based on this process, few solutions will be presented:

- Plan MBSA to define inputs needed, objectives and development specification
- Model-Based System Engineering (MBSE) / MBSA coupling initiatives (S2C, S2ML...) and others methods to ensure the model representativeness to the corresponding system
- Model-checking for the verification of the consistency of the model
- Validation activities (step-by-step simulation...)
- Provide documentation with model for explanation
- MBSA supporting activities (training & communication) and resources (database, existing patterns...)
- Possibilities offered by MBSA tools & languages to assist modelers
Panel – VIII

COVID-19 pandemic: Risk analytics

Organizer
Bracke, Stefan, bracke@uni-wuppertal.de — University of Wuppertal, Chair of Reliability Engineering and Risk Analytics, Gaußstrasse 20, 42119 Wuppertal, Germany

Panel List
Bracke, Stefan, bracke@uni-wuppertal.de, University of Wuppertal
Van Gulijk, Coen, coen.vangulijk@tno.nl, University of Huddersfield

Description
Since December 2019, the world is confronted with the COVID-19 pandemic, caused by the Coronavirus SARS-CoV-2. The COVID-19 pandemic with its incredible speed of spread shows the vulnerability of a globalized and networked world. The first months of the pandemic were characterized by heavy burden on health systems and severe restrictions on public life within a lot of countries, like educational system shutdown, public traffic system breakdown or a comprehensive lockdown. The focus of the panel is the discussion of risk and safety analytics regarding the analyse of several control strategies or combinations of them, like restrictions, medical care actions and medical prevention activities.

Motivation
The COVID-19 pandemic continues to this day. The impact of the pandemic continues to influence life in various countries around the world. Methods from reliability and safety engineering can help regarding the estimation of risks and can be a fundament for finding proper actions to control the pandemic.

Panel – IX

Confiance.ai

Organizer
Bertrand Braunschweig, bertrand.braunschweig@ext.irt-systemx.fr, IRT SystemX

Panel List
Bertrand Braunschweig, scientific coordinator of confiance.ai
Christophe Bohn, project coordinator, IRT SystemX
Francois Terrier, AI leader, CEA LIST

Abstract
Artificial intelligence requires a great deal of research and innovation to reach its full potential. In particular, the integration and safe use of AI technologies are essential to support the engineering, development and diffusion of innovative products and services. The Confiance.ai program, an important initiative coordinated by IRT SystemX and supported by major industries and academics, aims to provide an environment for the design, validation and testing of AI systems to strengthen trust, explainability, dependability and move towards the certification of these systems.

The session will highlight the motivations for the program, its main components and look at the scientific challenges associated with it, especially in the domains of safety and reliability.
Plenary Lecture I

Date/Time: Monday, September 20, 2021 / 09:30–10:10 hrs
Venue: Auditorium
Title: Artificial Intelligence, Safety and Reliability: an old story or a new age?
By: Patrice Aknin

Directeur Scientifique, Institut de Recherche Technologique SystemX,
https://www.researchgate.net/profile/Patrice_Aknin

Biography
Patrice Aknin is a data science researcher who holds the position of Scientific Director at IRT SystemX since 2013. SystemX is an RTO (Research Technological Organisation) located in Saclay, near Paris, which is positioned as an accelerator of the digital transformation of industry, services and territories. Previously, he was Scientific Director at SNCF, the French national railway company. Between 1988 and 2013, he held various positions as a Researcher and then Research Director at Ifsttar (French Institute of science and technology for Transport, Development and Networks), which recently became the University Gustave Eiffel. He is professor at Ecole des Ponts Paris tech and also at Télécom Paris. He is a member of several scientific councils of prestigious institutions such as ENS Paris-Saclay, Télécom SudParis and ENSTA Paris. He has directed the PhD work of about twenty students. He is the author or co-author of nearly 150 publications in the fields of diagnosis, data science, maintenance, mainly on applications in the field of transport.

Abstract
The new proposals of artificial intelligence, and especially data science, are now flooding the scientific field, the industrial field, and, more generally, society. These proposals are not limited to the progress in machine learning itself, especially in deep learning. Indeed, many scientific areas are impacted and are facing significant evolutions: image recognition, scientific computation aggregating physical models and data-based models, data augmentation, natural language processing, optimization and reinforcement learning, new digital twins, cyber-detection by machine learning, supervision of large industrial systems, bidirectional digital assistants (learning from and to the expert), hybridization between symbolic AI and connectionist AI... The fields of safety, maintenance, and reliability are not exempt from this surge and these promises. But is this safety-IA hybridization new? One could say that until now, data science has come to the rescue of safety to help describe aging processes, stochasticity of states and their transitions, ... In its unsupervised versions, it can also be of great help in detecting cases of failure not yet observed in real life. Today, with the explosion in the number of AI algorithms integrated into industrial and service systems, the question arises about their validation and confidence placed in them. Safety sees before it a new field of application of exponential size where the usual tools are helpless in the face of the combinatorial nature of states and operational domains with an increasingly wide spectrum. The talk proposes response elements to these dual-entry questions. It will illustrate them through current applications such as autonomous vehicle validation, fault diagnosis of large critical systems, and rail maintenance.
Plenary Lecture II

Date/Time Monday, September 20, 2021 / 15:20–16:00 hrs
Venue Auditorium
Title From Parameter Design to Data Science
By C. F. Jeff Wu
 Georgia Institute of Technology

Abstract
In this talk I will first trace the history of my role in the coinage of the term “data science”. For many years since the early 1980s, I had grown dissatisfied with using the term “statistics” to describe my profession because it is usually connected with descriptive statistics, while what statisticians do can be summarized as a trilogy of data collection, data modeling, and problem solving. Thus I proposed the terms data science and data scientist in a public lecture at the U. of Michigan in 1997. With the explosion of huge data collected through the internet, data science has grown to become a very popular, fashionable and impactful profession. I will describe how it is so different from the traditional meaning and work of statistics. A major new component is the role played by computer scientists and the new emphases on algorithms, coding and huge data they bring in. I will end with some examples about the applications to uncertainty quantification and variation reduction.

Biography
E. Jeff Wu is Professor and Coca Cola Chair in Engineering Statistics at the School of Industrial and Systems Engineering, Georgia Institute of Technology. He was elected a Member of the National Academy of Engineering (2004), and a Member (Academician) of Academia Sinica (2000). A Fellow of American Society for Quality, of Institute of Mathematical Statistics, of INFORMS, and of American Statistical Association. He received the COPSS Presidents’ Award in 1987, COPSS Fisher Lecture Award in 2011, Deming Lecture in 2012. He has won other awards, including the Shewhart Medal (2008), the Pan Wenyuan Technology Award (2008), Class of 1934 Distinguished Professor Award and Sigma Xi Momie A. Ferst Award both at Georgia Institute of Technology in 2020. He was the 1998 Mahalanobis Memorial Lecturer at the Indian Statistical Institutes, received the inaugural Akaike Memorial Lecture Award in 2016 sponsored by the Japan Statistical Society and the Institute of Statistical Mathematics, Tokyo, the 2017 Box Medal from ENBIS, and an honorary doctor degree at the University of Waterloo.

He has published more than 185 research articles. He has supervised 50 Ph.D.’s, out of which more than half are teaching in major research departments in statistics/engineering/business in US/Canada/Asia/Europe. Among them, there are 22 Fellows of ASA, IMS, ASQ, IAQ, and IIE. He co-authors with Mike Hamada the book “Experiments: Planning, Analysis, and Optimization” (Wiley, 3rd ed. 2021) and with R. Mukerjee the book “A Modern Theory of Factorial Designs” (Springer, 2006).
Plenary Lecture III

Date/Time: Tuesday, September 21, 2021 / 11:50–12:30 hrs
Venue: Auditorium

Title: Extending the Service Life of Civil and Marine Structures: Role of Monitoring, Probabilistic Life-cycle Management and Risk-based Decision Making

By: Dan M. Frangopol
The Fazlur Rahman Khan Endowed Chair of Structural Engineering and Architecture, Professor of Civil Engineering, Department of Civil and Environmental Engineering, ATLLS Center, Lehigh University, Bethlehem, PA 18015-4729, USA,
http://www.lehigh.edu/~dmf206

Biography:
Dan M. Frangopol is the inaugural holder of the Fazlur R. Khan Endowed Chair of Structural Engineering and Architecture at Lehigh University. Before joining Lehigh University in 2006, he was Professor of Civil Engineering at the University of Colorado at Boulder, where he is now Professor Emeritus. His main research interests are in the development and application of probabilistic concepts and methods to civil and marine engineering. He is recognized as a leader in the field of life-cycle engineering of civil and marine structures under various types of hazards. Dr. Frangopol is the Founding President of the International Association for Bridge Maintenance and Safety (IABMAS) and International Association for Life-Cycle Civil Engineering (IALCCE). He has authored/co-authored 3 books, more than 50 book chapters, and over 420 articles in archival journals including 11 prize winning papers. He is the Founding Editor of Structure and Infrastructure Engineering and of the Book Series Structures and Infrastructures. Dr. Frangopol is the recipient of several medals, awards, and prizes, from ASCE, IABSE, IASSAR, SAE and other professional organizations. He has served as a consultant or advisor to companies in North America, Asia, and Europe. He holds 4 honorary doctorates and 14 honorary professorships from major universities. He is an Elected Member of the US National Academy of Construction, a Foreign Member of the Academy of Europe (London), a Foreign Associate of the Engineering Academy of Japan, a Foreign Member of the Royal Academy of Belgium, an Honorary Member of the Romanian Academy, an Honorary Member of the Romanian Academy of Technical Sciences, and a Distinguished Member of ASCE.

Abstract:
Structural deterioration can pose tremendous risk to the functionality, serviceability, and safety of civil and marine structures, considerably limiting their service life. To extend the life-cycle of existing structures under deterioration, rational life-cycle management should be conducted accounting for various uncertainties arising from loads, resistance, and modeling. Compared to conventional inspection methods that are sometimes disruptive and costly, structural health monitoring provides a novel and cost-efficient approach to reducing uncertainties and ultimately facilitating the decision-making process for realizing structural longevity. In this plenary lecture, recent accomplishments in the integration of monitoring, probabilistic life-cycle management and risk-based decision making for extending the service-life of civil and marine structures are presented.
Plenary Lecture IV

Date/Time: Wednesday, September 22, 2021 / 11:50–12:30 hrs
Venue: Auditorium

Title: Cognitive, practical, organisational and regulatory safety challenges of a new era
By: Jean-Christophe LE COZE
Safety researcher, Institut national de l'environnement industriel et des risques (Ineris)
https://ineris.academia.edu/jeanchristophelecoze

Biography

Jean-Christophe Le Coze is a safety researcher (PhD, Mines ParisTech, HDR) at INERIS, the French national institute for environmental safety. His activities combine ethnographic studies and action research in various safety-critical systems. He is the editor of the book "Safety Science Research. Evolution, Challenges and New Directions" (2019) and author of "Post Normal Accident. Revisiting Perrow’s classic" (2020).

Abstract

Safety-critical systems such as offshore platforms, hospitals, aircrafts, nuclear power plants, refineries, bridges, dams, mines … rely on a myriad of artefacts, actors and institutions to operate safely. It is an admirable political, technological, social and economic endeavour re-enacted everyday all over the world. But sometimes, when a bridge collapses, a building burns, an offshore platform explodes, a nuclear reactor melts down, a train derails, a ship sinks or a plane crashes, we are reminded how precarious such successes are and we are also reminded of the diversity of practices across countries, sectors and companies. The Boeing 737 Max crashes in 2018 and 2019, the Grenfell tower fire in London in 2017 or the collapse of Vale’s dam in Brazil in 2019 are recent reminders of such events. The analysis of these events reveal a number of features which characterise the current operating landscape of safety-critical systems which includes globalisation, digitalisation, externalisation or financialisation. What many safety-critical systems share these days are their properties of ‘networks of networks’ which requires for safety research to explore their cognitive, practical, organisational and regulatory features together (to which one needs to add their ecological side). This is a complex and ambitious endeavor. The talk will provide insights from a collective book ‘Safety Science Research: Evolution, Challenges and New Directions’ (CRC Press, 2019) which addresses this problem.
Date/Time: Wednesday, September 22, 2021 / 15:20–16:00 hrs
Venue: Auditorium
Title: Safer by design concept
By: Catherine Mouneyrac
Professor in Ecotoxicology, Vice-Rector for research and valorization
(Université Catholique de l’Ouest - Angers, France)

Abstract:
Because the physicochemical properties of nanoparticles are distinct from their bulk counterparts, the fast growth of nanotechnologies has brought new industrial and business opportunities. The field of nanotechnology has shown a huge expansion during the last decade and the key challenge is how to take into account potential risks to human and environmental health posed by long-term exposure to and accumulation of nanoparticles? However, manufactured nanomaterial production is outpacing the ability to investigate environmental hazard using current regulatory paradigms, causing a backlog of materials requiring testing. Based on results from toxicological and ecotoxicological studies, researchers now have a better grasp on the relationships between the nanomaterials’ physicochemical characteristics and their hazard profiles. Nowadays, it is expected that an integration of design synthesis and safety assessment will foster nanomaterials safer-by-design by considering both applications and implications. Multiple case studies will be presented on the safer by design concept.
Naval Group est une entreprise de haute technologie d’envergure internationale et compte parmi les rares leaders mondiaux des systèmes navals de défense qui maîtrisent l’ensemble de la chaîne de réalisation des programmes complexes.

Naval Group répond aux besoins de ses clients grâce à ses savoir-faire exceptionnels et ses moyens industriels uniques.

Rendez-vous sur naval-group.com
SATODEV is a French company specialized in Reliability Availability Maintainability and Safety software. SATODEV is developer and official retailer of GRIF-Workshop (Dependability workshop of TotalEnergies) and CECILIA-Workshop (FT and MBSA tool of Dassault-Aviation). We propose advanced expert assessment to the software use for complex studies.

Whatever the customer, we provide personalized and direct contact, a great asset that allowed SATODEV to quickly find a position of choice facing major companies.

Please visit our website: https://www.satodev.fr

RFI Wise
https://wiseprogram.eu/
RFI Atlantisc 2020
https://atlantisc2020.fr/

Atlantisc 2020 federates the regional ecosystem in digital sciences to meet the challenges of the ongoing digital revolution, improve the visibility and attractiveness of the "digital" sector in Pays de la Loire and meet the high demand for recruitment in this sector. Since 2015, Atlantisc 2020 has funded nearly 90 projects in the following research labs LS2N (Nantes), LERIA, LARIS, ESEO (Angers) and LIUM (Le Mans).
ESRA & Social Events

ESRA EVENTS (FOR ESRA REPRESENTATIVES ONLY)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday, September 20, 2021</td>
<td>18:00 – 19:00 hrs</td>
<td>ESRA Assembly</td>
</tr>
<tr>
<td>Monday, September 20, 2021</td>
<td>19:00 – 20:30 hrs</td>
<td>ESRA Dinner</td>
</tr>
</tbody>
</table>

SOCIAL EVENTS

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunday, September 19, 2021</td>
<td>17:00 – 20:00 hrs</td>
<td>Welcome Reception</td>
</tr>
<tr>
<td>Wednesday, September 22, 2021</td>
<td>19:00 – 01:00 hrs</td>
<td>Gala Dinner</td>
</tr>
<tr>
<td>Monday & Tuesday, September 20, 21, 2021</td>
<td>17:30 – 19:00 hrs</td>
<td>5 visit tours are organized as part of ESREL 2021. The events were booked during registration.</td>
</tr>
</tbody>
</table>

Angers running tour

A sporting break to explore Angers. In small strides, you will be guided through the city between urban architecture and nature for a moment of meeting and sharing, but above all of decompression around the same passion.

Historic visit of Angers

Cross the city of the canons, to discover the Saint-Maurice cathedral, a vestige of Romanesque art and the Plantagenet Gothic style, as well as the famous Adam’s house, a true symbol of Angevin among the timber-framed houses that line the historic centre. You will finish this discovery by tasting a selection of wines from the region.

Tasty visit of Angers

Come and (re)discover the history of the products for which Angers is famous and which represent the imagination of craftsmen and chefs who are passionate about the pleasure of our taste buds!

During this commented tour in the centre of Angers, enjoy a taste break with some Angevin delicacies.
Angers uncut

In the heart of the historic centre, anecdotes, unusual places and secrets of the Angevins will be revealed to you by our guide.

Much more than a visit, it is a discovery of Angers in a different way, an intimate sharing, an experience not to be missed.

Visit of Medieval Castle

The must-see visit that takes you in the footsteps of King René!

Discover the monumental 13th-century fortress, with its 17 schist and tufa towers, which overlooks the Maine and houses the famous Tenture of the Apocalypse, a woven work that is unique in the world.
GUIDELINES FOR PRESENTERS AND SESSION CHAIRS

Each presentation has been allocated 15 minutes, with an additional 5 minutes for discussion. Presenters should upload their presentation onto the presentation computers before their session using a USB memory device. These computers are running under Windows operating system. Please, keep in mind to bring your presentation files as either PowerPoint or PDF. Presenters haven’t the possibility to use their own. Conference staff will be there during the breaks to help.

Session Chairs have the responsibility to introduce the speakers, to lead the discussions, and to ensure that the session schedule is observed. Every effort should be made to keep to the 20-minute total time allocation for each presenter to ensure the next talk starts on time.

CONFERENCE APP

A mobile web application for the conference is also available. Here you can access detailed information on the scheduled talks and any last-minute changes to the program. The app allows you to find your personal highlights at the conference and build your personal agenda.

INTERNET ACCESS

Free WiFi network access is provided everywhere at the conference locations.
Network: WIFI public CCA, no login and password are needed

REGISTRATION DESK

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunday, 19th September 2021</td>
<td>17:00 – 20:00 hrs</td>
</tr>
<tr>
<td>Monday, 20th September 2021</td>
<td>08:00 – 17:00 hrs</td>
</tr>
<tr>
<td>Tuesday, 21st September 2021</td>
<td>08:00 – 17:00 hrs</td>
</tr>
<tr>
<td>Wednesday, 22nd September 2021</td>
<td>08:00 – 17:00 hrs</td>
</tr>
<tr>
<td>Thursday, 23rd September 2021</td>
<td>08:30 – 11:00 hrs</td>
</tr>
</tbody>
</table>

CERTIFICATE OF ATTENDANCE

If you would like to receive a printed certificate of attendance you can request one at the registration desk.

SECURITY

Your name badge must be worn at all times otherwise you will not be allowed entry to the conference.
HYGIENE AND HEALTH SECURITY MEASURES

EVENT HOSTING at Angers Congress Centre and Exhibitions centre
Health and safety measures

Exceptional measures and arrangements to deal with the health crisis linked to COVID-19

Protection of people
- Wearing of masks is compulsory in the halls and on the move, except for children under the age of 6
- Hand-alcohol gel available, reception areas and meeting rooms
- Employees and service providers must wear masks

Compliance with barrier measures
- Distance of 1 metre between people with masks and 2 metres when masks are not worn
- Organisations and distributors of access control to limit contact
- Re-arrangement of spaces
- Use of every second or third seat in conference, seminar and exhibition rooms
- Indication of capacity at the entrance to each room

Hygiene
- Reinforcement of cleaning and waste disposal protocol to avoid any infection risk
- Increasing the frequency of cleaning and disinfection of sanitary facilities (toilets, handwashing stations)
- Cleaning or sanitising hands, handles, clothing, etc.
- Compliance with cleanliness and hygiene rules (gloves, masks, etc.)

And to do this
- Checking that instructions are compliance with sanitary instructions: a COVID referent per site and per event
- Broadcasting of messages on indoor screens
- Regular monitoring and updating of measures in line with the government recommendations
- Isolation area set up to receive people with fever in case of suspicion
- Paper towels and hand dryers should be taken out of service
- Non-sharing of accessories (pencils, pens, etc.)
- Removing air (where possible)
Day 1: Monday, 20 September 2021 — [Parallel]

<table>
<thead>
<tr>
<th>Session</th>
<th>[MO1A]—Risk Assessment</th>
<th>Day/Date/Time</th>
<th>Monday, 20 Sep. 2021/10:25–11:25 hrs</th>
<th>Venue</th>
<th>Auditorium</th>
</tr>
</thead>
<tbody>
<tr>
<td>MO1A 045</td>
<td>10:25 hrs</td>
<td>3</td>
<td>Model for Managing MOC Risks Through Artificial Intelligence</td>
<td>Marcelo Povoas, José Cristiano Pereira, Davi da Fonseca Vieira Junior, Marinato and Antonio de Paula Pedrosa</td>
<td></td>
</tr>
<tr>
<td>MO1A 096</td>
<td>10:45 hrs</td>
<td>3</td>
<td>Simulation Based Probabilistic Risk Assessment (SIMPRA): Risk Based Design</td>
<td>Seyed Hamed Nejad-Hosseinian, Tarannom Parhizkar and Ali Mosleh</td>
<td></td>
</tr>
<tr>
<td>MO1A 116</td>
<td>11:05 hrs</td>
<td>4</td>
<td>Margins Assessment using Dynamic PSA</td>
<td>Jean-Yves Brandelet, Thomas Dousa and Cédric Lyard</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MO1B 005</td>
<td>10:25 hrs</td>
<td>4</td>
<td>Reliability Assessment with a Compound Poisson Process-Based Shock Deterioration Model</td>
<td>Cao Wang</td>
<td></td>
</tr>
<tr>
<td>MO1B 027</td>
<td>10:45 hrs</td>
<td>5</td>
<td>A Comprehensive Probabilistic Assessment Method of UAS Ground Collision Risk</td>
<td>Théo Serru and Kevin Delmas</td>
<td></td>
</tr>
<tr>
<td>MO1B 019</td>
<td>11:05 hrs</td>
<td>5</td>
<td>Bayesian Quantification Of CCF Alpha Factors Model Parameters</td>
<td>Julien Beaucourt and Dounia Abassi</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MO1C 062</td>
<td>10:25 hrs</td>
<td>6</td>
<td>Research on Concept Modeling of Mission-Based Aviation Equipment Support System of System</td>
<td>Ding Gang, Cui Li-jié, Zhang Lin and Cong Ji-Ping</td>
<td></td>
</tr>
<tr>
<td>Session</td>
<td>Day/Date/Time</td>
<td>Venue</td>
<td>Presentations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>-------</td>
<td>---------------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| MOIC 074 | 10:45 hrs | Panoramique | Criticality-Based Predictive Maintenance Scheduling for Aircraft Components with a Limited Stock of Spare Components
Ingeborg de Pater, Maria del Mar Carillo Galera and Mihaela Mitici |
| MOIC 111 | 11:05 hrs | Panoramique | How to Design Warranty Contracts Based on Customer Segmentation
Mohamed Jmel, Bruno Castanier and Walid Ben Ahmed |
| MOIC 105 | 10:25 hrs | Panoramique | Investigation Into Real-Time Influence of Time Varying Operational Conditions and Sensor Signals on Reliability of Engineered Systems
Hongmin Zhu |
| MOIC 139 | 10:45 hrs | Panoramique | A Fast Fault Diagnosis Method for The Unlabeled Signal Based on Improved PSO-DBSCAN Algorithm
Shijie Wei, Huina Mu, Pengbo Zhang, Xiaojian Yi and Yuhang Cai |
| MOIC 176 | 11:05 hrs | Panoramique | An Intelligent Fault Diagnosis Method of Gear Based on Parameter-Optimized DBN Using SSA
Jingbo Gai, Kangyu Zhang, Xuejiao Du and Ke Yan |
| MOIE 013 | 10:25 hrs | Amphi Jardin | The Use of Driving Simulator for Training Learner Drivers Belonging to a High-Risk Group
Gunhild Birgitte Sætren, Jonas Renemo Vaag and Thor Owe Holmqvist |
| MOIE 024 | 10:45 hrs | Amphi Jardin | Studying Mental Stress Factor in Occupational Safety in the Context of the Smart Factory
Zohreh Zakari, Ahmet Omurtag, Philip Bredon, Greg Hilliard and Asfar Khalid |
| MOIE 085 | 11:05 hrs | Amphi Jardin | Best Practices in Digital Human System Interfaces at Nordic Nuclear Powerplants
Lars Hurlen, Alexandra Fernandes, Kine Reegård and Håkan Svengren |
<table>
<thead>
<tr>
<th>Session</th>
<th>Technical Programme</th>
</tr>
</thead>
<tbody>
<tr>
<td>MO1F</td>
<td>Degradation analysis and modelling for predictive maintenance</td>
</tr>
<tr>
<td>Day/Date/Time</td>
<td>Monday, 20 Sep. 2021/10:25–11:25 hrs</td>
</tr>
<tr>
<td>Venue</td>
<td>Espace Grand Angle</td>
</tr>
<tr>
<td>MO1F 174</td>
<td>10:25 hrs</td>
</tr>
<tr>
<td>Frédéric Cosset, Mitra Fouladirad and Christian Paroissin</td>
<td></td>
</tr>
<tr>
<td>MO1F 227</td>
<td>10:45 hrs</td>
</tr>
<tr>
<td>Filtering Noisy Gamma Degradation Process: Genz Transform Versus Gibbs Sampler</td>
<td></td>
</tr>
<tr>
<td>Xingheng Liu and Jørn Vått</td>
<td></td>
</tr>
<tr>
<td>MO1F 258</td>
<td>11:05 hrs</td>
</tr>
<tr>
<td>Nicola Esposito, Agostino Mele, Bruno Castanier and Massimiliano Giorgio</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session</th>
<th>Technical Programme</th>
</tr>
</thead>
<tbody>
<tr>
<td>MO1G</td>
<td>Nuclear Industry</td>
</tr>
<tr>
<td>Day/Date/Time</td>
<td>Monday, 20 Sep. 2021/10:25–11:25 hrs</td>
</tr>
<tr>
<td>Venue</td>
<td>Atrium 3</td>
</tr>
<tr>
<td>MO1G 125</td>
<td>10:25 hrs</td>
</tr>
<tr>
<td>Dana Prochazkova, Jan Prochazka and Vaclav Dostal</td>
<td></td>
</tr>
<tr>
<td>MO1G 126</td>
<td>10:45 hrs</td>
</tr>
<tr>
<td>Increase of Safety of Steam Generator by Reconstructing the Water Supply Pipe</td>
<td></td>
</tr>
<tr>
<td>Karel Vidal and Dana Prochazkova</td>
<td></td>
</tr>
<tr>
<td>MO1G 132</td>
<td>11:05 hrs</td>
</tr>
<tr>
<td>Method of Extending the Operation of Steam-Generator on Nuclear Installation under Conditions of Long-Term Station-Black-Out</td>
<td></td>
</tr>
<tr>
<td>Jan Jirousek and Dana Prochazkova</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session</th>
<th>Technical Programme</th>
</tr>
</thead>
<tbody>
<tr>
<td>MO1H</td>
<td>Aeronautics and Aerospace</td>
</tr>
<tr>
<td>Day/Date/Time</td>
<td>Monday, 20 Sep. 2021/10:25–11:25 hrs</td>
</tr>
<tr>
<td>Venue</td>
<td>Cointreau</td>
</tr>
<tr>
<td>MO1H 050</td>
<td>10:25 hrs</td>
</tr>
<tr>
<td>Predictive Aircraft Maintenance: Modeling and Analysis Using Stochastic Petri Nets</td>
<td></td>
</tr>
<tr>
<td>Juseong Lee and Mihaela Mitici</td>
<td></td>
</tr>
<tr>
<td>MO1H 119</td>
<td>10:45 hrs</td>
</tr>
<tr>
<td>Quality and Safety Performance in a Regional Airport: Comparing Passengers’ and Employees’ Perceptions with KPI</td>
<td></td>
</tr>
<tr>
<td>Luca D’Alonzo, Maria Chiara Leva, Edgardo Bucciarelli, Donato Rapino and Sara Perinetti</td>
<td></td>
</tr>
</tbody>
</table>
Technical Programme

Session MO1H

11:05 hrs

Research on Suitable Temperature and Humidity Technology Methods for UAV Storage Microenvironment

Kai Yan, Xiao Gang Li and Qian Yu

Day/Date/Time Monday, 20 Sep. 2021/10:25–11:25 hrs

Venue Giffard

Session MO1I

10:25 hrs

Actors and Risk: Trade-Offs Between Risk Governance and Securitization Theory

Cathrine Witnes Karlson, Claudia Morsut and Ole Andreas Hegland Engen

10:45 hrs

Hybridization of Safety and Security for the Design and Validation of Autonomous Vehicles: Where Are We?

Martin Boyer, Théo Chelim and Jeremy Sobieraj

11:05 hrs

A NaTech Vulnerability Indicator for Local Planners

Eleonora Pilone, Micaela Demichela and Gianfranco Camuncoli

Day/Date/Time Monday, 20 Sep. 2021/10:25–11:25 hrs

Venue Botanique 2

Session MO1J

10:25 hrs

Propagating Local Measurements Along a Railway Network

Benoit Guyot and Lina El Houari

10:45 hrs

MAINRAIL: Maintenance Optimization of Railway Infrastructure Through Physical Modeling and Advanced Analytics

Unai Alvarado, Pablo Cíaurriz, Albi San Emeterio, Itxaro Errandonea and Jorge Rodríguez

11:05 hrs

Behavioural Modelling of Signalling Constituents

xxxvii
Session [MO2A]—Risk Assessment
Day/Date/Time Monday, 20 Sep. 2021/11:30–12:30 hrs
Venue Auditorium

MO2A 192 11:30 hrs
Risk Propagation Modeling of Construction Project
H. Lmoussaoui and H. Jamouli

MO2A 194 11:50 hrs
Evolved Methods for Risk Assessment
Andrew Jackson, Silvia Tolo and John Andrews

MO2A 195 12:10 hrs
A New Model-Based Risk Analysis Approach that Generate Cyberattacks Scenarios and Combine them with Safety Risks
Tamara Oueidat, Jean-Marie Flaus and François Massé

Session [MO2B]—Mathematical Methods in Reliability and Safety
Day/Date/Time Monday, 20 Sep. 2021/11:30–12:30 hrs
Venue Amphi Jardin

MO2B 067 11:30 hrs
Estimating Parameters of the Weibull Competing Risk Model with Masked Causes and Heavily Censored Data
Pamphile Patrick and Celeux Gilles

MO2B 090 11:50 hrs
Identifying Critical Failure-Propagation in Function Models of Complex Systems
Yann Guillouët and Frank Sill Torres

MO2B 093 12:10 hrs
Adaptive Learning for Reliability Analysis using Support Vector Machines
Nick Pepper, Luis Crespo and Francesco Montomoli

Session [MO2C]—Maintenance Modeling and Applications
Day/Date/Time Monday, 20 Sep. 2021/11:30–12:30 hrs
Venue Espace Grand Angle 2

MO2C 117 11:30 hrs
Modelling the Maintenance of Membranes in Reverse-Osmosis Desalination
Frits van Rooij, Philip Scarf and Phuc Do

MO2C 129 11:50 hrs
Accessibility Evaluation Method based on D-H Model and Comfort
Hongduo Wu, Dong Zhou, Yuning Liang, Ziyue Guo and Yan Wang
Technical Programme

Session [MO2D]—Prognostics and Health Management: From Condition Monitoring to Predictive Maintenance

<table>
<thead>
<tr>
<th>Number</th>
<th>Day/Date/Time</th>
<th>Venue</th>
</tr>
</thead>
<tbody>
<tr>
<td>MO2D 142</td>
<td>12:10 hrs</td>
<td></td>
</tr>
<tr>
<td>MO2D 142</td>
<td>12:10 hrs</td>
<td>Panoramique</td>
</tr>
</tbody>
</table>

Condition-Based Maintenance for Systems with Dependencies: Related Concepts, Challenges and Opportunities

Yixin Zhao and Yiliu Liu

<table>
<thead>
<tr>
<th>Number</th>
<th>Day/Date/Time</th>
<th>Venue</th>
</tr>
</thead>
<tbody>
<tr>
<td>MO2D 136</td>
<td>11:30 hrs</td>
<td></td>
</tr>
<tr>
<td>MO2D 136</td>
<td>11:30 hrs</td>
<td>Panoramique</td>
</tr>
</tbody>
</table>

Component Degradation Detection Through Autoencoders Based on Monitoring Data

Sergio Cofre-Martel, Enrique Lopez Drogueit and Mohammad Modares

<table>
<thead>
<tr>
<th>Number</th>
<th>Day/Date/Time</th>
<th>Venue</th>
</tr>
</thead>
<tbody>
<tr>
<td>MO2D 152</td>
<td>11:50 hrs</td>
<td></td>
</tr>
<tr>
<td>MO2D 152</td>
<td>11:50 hrs</td>
<td>Panoramique</td>
</tr>
</tbody>
</table>

Combination of Long Short-Term Memory and Particle Filtering for Future Uncertainty Characterization in Failure Prognostic

Hassan Hachem, Hai Canh Vu and Mitra Fouladirad

<table>
<thead>
<tr>
<th>Number</th>
<th>Day/Date/Time</th>
<th>Venue</th>
</tr>
</thead>
<tbody>
<tr>
<td>MO2D 209</td>
<td>12:10 hrs</td>
<td></td>
</tr>
<tr>
<td>MO2D 209</td>
<td>12:10 hrs</td>
<td>Panoramique</td>
</tr>
</tbody>
</table>

Remaining Useful Lifetime Prediction and Noisy Stochastic Deterioration Process Considering Sensor Degradation

Yida Kohestani Nejad, Robert Meissner and Kai Wicke

<table>
<thead>
<tr>
<th>Number</th>
<th>Day/Date/Time</th>
<th>Venue</th>
</tr>
</thead>
<tbody>
<tr>
<td>MO2E 184</td>
<td>11:30 hrs</td>
<td></td>
</tr>
<tr>
<td>MO2E 184</td>
<td>11:30 hrs</td>
<td>Amphi Jardin</td>
</tr>
</tbody>
</table>

The Effect of Imperfect Maintenance on a System’s Condition Considering Human Factors

Espen Nystad

<table>
<thead>
<tr>
<th>Number</th>
<th>Day/Date/Time</th>
<th>Venue</th>
</tr>
</thead>
<tbody>
<tr>
<td>MO2E 229</td>
<td>11:50 hrs</td>
<td></td>
</tr>
<tr>
<td>MO2E 229</td>
<td>11:50 hrs</td>
<td>Amphi Jardin</td>
</tr>
</tbody>
</table>

Is the Performance of Control Room Operators Affected by Time on Task or Time of Day?

Khanh T. P. Nguyen, Kamal Medjaher and Marcos Orchard

<table>
<thead>
<tr>
<th>Number</th>
<th>Day/Date/Time</th>
<th>Venue</th>
</tr>
</thead>
<tbody>
<tr>
<td>MO2E 333</td>
<td>12:10 hrs</td>
<td></td>
</tr>
<tr>
<td>MO2E 333</td>
<td>12:10 hrs</td>
<td>Amphi Jardin</td>
</tr>
</tbody>
</table>

A Maintenance Performance Framework for the South African Electricity Transmission Industry

Rina Peach and Krige Visser

<table>
<thead>
<tr>
<th>Number</th>
<th>Day/Date/Time</th>
<th>Venue</th>
</tr>
</thead>
<tbody>
<tr>
<td>MO2F 325</td>
<td>11:30 hrs</td>
<td></td>
</tr>
<tr>
<td>MO2F 325</td>
<td>11:30 hrs</td>
<td>Espace Grand Angle</td>
</tr>
</tbody>
</table>

Analysis of a Condition-Based-Maintenance Policy in Heterogeneous Systems Subject to Periodic Inspections

Lucia Bautista Barcena and Ima T. Castro

<table>
<thead>
<tr>
<th>Number</th>
<th>Day/Date/Time</th>
<th>Venue</th>
</tr>
</thead>
<tbody>
<tr>
<td>MO2F 325</td>
<td>11:30 hrs</td>
<td></td>
</tr>
<tr>
<td>MO2F 325</td>
<td>11:30 hrs</td>
<td>Espace Grand Angle</td>
</tr>
</tbody>
</table>
Parameter Estimation of a Wiener Process of Mechanical Degradation Through Censored Measurement of Timings
Kai Hencken

General Degradation Model with Measurement Errors
Hsueh-Fang Ai and Chien-Yu Peng

Session [MO2G]—Nuclear Industry
Day/Date/Time Monday, 20 Sep. 2021/11:30–12:30 hrs
Venue Atrium 3

Interpretability Improvement of Convolutional Neural Network for Reliable Nuclear Power Plant State Diagnosis
Ji Hyeon Shin and Seung Jun Lee

An Operator Support System Framework and Prototype for Initial Emergency Response in Nuclear Power Plants
Jung Sung Kang and Seung Jun Lee

Resilience and Organizational Limits in the High-risk Nuclear Industry Context
Natalia Krasnopyrets, Catherine Thomas and Renata Kaminska

Session [MO2H]—Aeronautics and Aerospace
Day/Date/Time Monday, 20 Sep. 2021/11:30–12:30 hrs
Venue Cointreau

Comparison of Readiness to Perform the Task of Aircraft Used for Cadet Training
Krzysztof Cur, Mariusz Zieja, Tomasz Czerwinski and Justyna Tomasewska

Power Flow Based Fault State Propagation Model and its Application to Aircraft Actuation System
Yajing Qiao, Jian Shi, Shaoping Wang and Weiqi Liu

DROSERA: A Drone Simulation Environment for Risk Assessment
Nicolas Raballand, Sylvain Bertrand, Stéphanie Lala and Baptiste Levasseur
<table>
<thead>
<tr>
<th>Session</th>
<th>Date/Time</th>
<th>Venue</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11:30-12:30 hrs</td>
<td></td>
<td>A Cloud-Based Computational Platform to Manage Risk and Resilience of Buildings and Infrastructure Systems</td>
<td>Jürgen Hackl</td>
</tr>
<tr>
<td></td>
<td>11:30-12:30 hrs</td>
<td></td>
<td>Predicting Clinical Outcomes of Ovarian Cancer Patients: Deep Survival Models and Transfer Learning</td>
<td>Elena Spirina Menand, Nisrine Jrad, Jean-Marie Marion, Alain Morel and Pierre Chauvet</td>
</tr>
<tr>
<td>Session</td>
<td>Day/Date/Time</td>
<td>Venue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MO3A</td>
<td>213 16:30 hrs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>221 16:50 hrs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>269 17:10 hrs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MO3B</td>
<td>298 16:10 hrs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>489 16:30 hrs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>526 16:50 hrs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MO3C</td>
<td>355 16:10 hrs</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comparison of Risk Analysis Approaches for Analyzing Emergent Misbehavior in Autonomous Systems
Nektaria Kaloudi and Jingyu Li

Risk Assessment of Non-Compliance with General Data Protection Law (LGPD): A Necessary Adjustment for Healthcare Companies That Use Chatbots For Automated Care
Antonio de Paula Pedrosa, José Cristiano Pereira, Marcelo Póvoas, Davi da Fonseca Vieira Junior Marinato, Matheus Bastos de Almeida Bastos and Jose Luís Corrêa da Costa

QRA Analysis of Different Liquefied Natural Gas Supply Alternatives: A Case Study
Cristian Colombini Marco Pontiggia and Giovanni Uguccioni

MO3B 298 16:10 hrs
Justifying the Basis of Risk Decisions in a Pandemic – Framing the Issues
Ben J. M. Ale, Des N.D. Hartford and David H. Slater

MO3B 489 16:30 hrs
Achieving Inherent Safety From Inherent Hazard and Risk Factors
Sharmin Sultana, and Stein Haugen

MO3B 526 16:50 hrs
Comment Inclure La Malveillance Dans Les Analyses De Risques
Konstantina Karatzoudi and Terje Aven

MO3C 355 16:10 hrs
Using Cognitive Work Analysis to Develop Predictive Maintenance Tool for Vessels
Loïck Simon, Clément Guérin, Philippe Rauffet and Julie Lassalle
MO3C 449 16:30 hrs
An Overview of Machine Health Management in Industry 4.0
Minh Hung Ho, Amélie Ponchet-Durupt, Nassim Boudaoud, Hai Canh Vu, Arnaud Caracciolo, Sophie Sieg-Zieba, Yun Xu and Patrick Leduc

MO3C 527 16:30 hrs
A Robust Optimization Model for Maintenance Planning of Complex Systems
Hai-Canh Vu, Amélie Ponchet-Durupt and Nassim Boudaoud

MO3C 709 17:10 hrs
Maintenance Selection and Technician Routing on a Geographically Dispersed Set of Machines
Florian Delavernhe, Bruno Cantanierr, Christelle Gueret and Jorge E. Mendez

Session [MO3D]—Uncertainty Analysis
Day/Date/Time Monday, 20 Sep. 2021/16:10–17:30 hrs
Venue Panoramique

MO3D 081 16:10 hrs
Identification of Time-varying Parameters using Variational Bayes – Sequential Ensemble Monte Carlo Sampler
Adolphus Lye, Ander Gray and Edoardo Patelli

MO3D 084 16:30 hrs
Robust Tuning of Robbins-Monro Algorithm for Quantile Estimation – Application to Wind-Farm Asset Management
Bertrand Iooss and Jérôme Lonchampt

MO3D 089 16:50 hrs
Consideration of Test Bench Uncertainty in Reliability Predictions using Design of Experiments
Alexander Kremer and Bernd Bertsche

MO3D 228 17:10 hrs
Deriving Prior Knowledge from Lifetime Simulations for Reliability Demonstration while Considering the Uncertainty of the Lifetime Model
Achim Benz, Alexander Grundler, Martin Dazer and Bernd Bertsche

Session [MO3E]—Organizational Factors and Safety Culture
Day/Date/Time Monday, 20 Sep. 2021/16:10–17:30 hrs
Venue Amphi Jardin

MO3E 015 16:10 hrs
Spontaneous Volunteering During the Utøya Terror Attacks – A Document Study
Asbjørn Lein Aalberg and Rolf Johan Bye
MO3E 025 16:30 hrs
Super Users as Learning Agents in Organization’s Eco-System of Learning
Jonas R. Vaug and Gunhild B. Sætren

MO3E 066 16:50 hrs
Professionalization in Safety: Enhancing Socialization by Eliciting Forms of Identity
Christian Foussard, Wim Van Wassenhove and Cedric Denis-Renix

MO3E 091 17:10 hrs
Safety and Security: A Cross-Professional Comparison
Riana Steen, Hugo Ribeiro and Anurag Shukla

Session [MO3F]—Security
Day/Date/Time Monday, 20 Sep. 2021/16:10–17:30 hrs
Venue Espace Grand Angle

MO3F 070 16:10 hrs
Contrastive Feature Learning for Fault Detection and Diagnostics
Katharina Rombach, Gabriel Michau and Olga Fink

MO3F 175 16:30 hrs
Physical Security Risk Analysis for Mobile Access Systems Including Uncertainty Impact
Thomas Termin, Daniel Lichte and Kai-Dietrich Wolf

MO3F 231 16:50 hrs
Cyber and Electromagnetic Activities and Their Relevance in Modern Military Operations
Radovan Vasicek and Alena Oulehlova

MO3F 234 17:10 hrs
Scenario Analysis of Threats Posed to Critical Infrastructures by Civilian Drones
Moritz Schneider, Daniel Lichte, Dustin Witte, Stephan Gimbel and Eva Brucherseifer

Session [MO3G]—Oil and Gas Industry
Day/Date/Time Monday, 20 Sep. 2021/16:10–17:30 hrs
Venue Atrium 3

MO3G 073 16:10 hrs
Novel Application of Technology in Subsea Safety Instrumented System: Battery-Based Shutdown System
Jone Nikolai Sigmundstad and Ellen Lycke

MO3G 180 16:30 hrs
Rescue of Personnel after Emergency Evacuation from Offshore Petroleum Installations
Jan-Erik Vinrem, Stine A. Ranum, Maria S. Vold, Trond S. Johansen, Sigurd R. Jacobsen, and Arnt-H. Steinhusk

MO3G 188 16:50 hrs
Emergency Communication Challenges in the Oil and Gas Sector of Norway
K. Olsen, R. Bernum and S. Petersen
<table>
<thead>
<tr>
<th>Session</th>
<th>[MO3G] — Railway Industry</th>
<th>Day/Date/Time</th>
<th>Venue</th>
</tr>
</thead>
<tbody>
<tr>
<td>MO3G 245</td>
<td>17:10 hrs</td>
<td>Monday, 20 Sep. 2021/16:10–17:30 hrs</td>
<td>Cointreau</td>
</tr>
<tr>
<td>MO3G 332</td>
<td>17:30 hrs</td>
<td>Monday, 20 Sep. 2021/16:10–17:30 hrs</td>
<td>Cointreau</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session</th>
<th>[MO3H] — AI for safe, secure and dependable operation of complex Systems</th>
<th>Day/Date/Time</th>
<th>Venue</th>
</tr>
</thead>
<tbody>
<tr>
<td>MO3H 008</td>
<td>16:10 hrs</td>
<td>Monday, 20 Sep. 2021/16:10–17:30 hrs</td>
<td>Giffard</td>
</tr>
<tr>
<td>MO3H 009</td>
<td>16:30 hrs</td>
<td>Monday, 20 Sep. 2021/16:10–17:30 hrs</td>
<td>Giffard</td>
</tr>
<tr>
<td>MO3H 025</td>
<td>17:00 hrs</td>
<td>Monday, 20 Sep. 2021/16:10–17:30 hrs</td>
<td>Giffard</td>
</tr>
<tr>
<td>MO3H 133</td>
<td>17:10 hrs</td>
<td>Monday, 20 Sep. 2021/16:10–17:30 hrs</td>
<td>Giffard</td>
</tr>
</tbody>
</table>

Digitalization in the Norwegian Oil- and Gas Industry: Identified Challenges
Geir Kjetil Hanssen, Thor Myklebust and Tor Onshus

Statistical Assessment of Safety Levels of Railway Operators
Jens Braband and Hendrik Schabe

Application of the Cox Regression Model for Analysis of Railway Safety Performance
Jens Braband and Hendrik Schabe

Research on Fault Propagation Characteristics of Fully Automated Operation System Based on Complex Network
Fei Yan, Yanmei Wang, Mo Li, Ru Niu and Tao Tang

A Case Study on Managing the Complexity of Service Failure Modes in IoT Systems
Sebastian Klabes and Marc Zeller

Graph Networks for Power System Dynamics Prediction
Haiwei Xie and Olga Fink

Semi-Supervised Learning with Temporal Variational Auto-Encoders for Reliability
Gabriel San Martin Silva and Enrique López Droguett

Bearing Fault Diagnosis Method Based on Multi-Class Support Vector Machine and Grey Relational Degree
Boyang Zhao, Jicheng Jia, Ya Tu, Yun Lin and Zhaojun Li

A Temporal Pyramid Pooling-Based Convolutional Neural Network for Remaining Useful Life Prediction
Ya Song, Laurens Bliek, Tangbin Xia and Yingqian Zhang
Session [MO3J]—Decision Science for Resilience
Day/Date/Time Monday, 20 Sep. 2021/16:10–17:30 hrs
Venue Botanique 2

MO3J 204 16:10 hrs
A Catalog of Change for the Prediction of Possible Scenarios After a Natural Disaster
Karla Saldana Ochoa and Sebastian Almagro Ortiz

MO3J 384 16:30 hrs
Katherine Emma Lonergan and Giovanni Sansavini

MO3J 719 16:50 hrs
Flood Risk Assessment and Application of Risk Curves to Enhance Resilience
Ning Zhang and Alice Alipour

MO3J 771 17:10 hrs
Dynamic Credal Networks for Resilience Assessment of Complex Engineering Systems
Hector Diego Estrada-Lugo, T.V. Santhosh, and Edoardo Patelli

Day 2: Tuesday, 21 September 2021 — [Parallel]

Session [TU1A]—Risk Assessment
Day/Date/Time Tuesday, 21 Sep. 2021/08:30–10:10 hrs
Venue Auditorium

TU1A 270 08:30 hrs
Risk Assessment of Ship Allision in Extreme Fjord Crossings
Tore Askeland, Cato Dørum, Mathias Egeland Eidem, Søren Randrup-Thomsen, Preben Terndrup Pedersen and Johannes Veie

TU1A 271 08:50 hrs
Risk Assessment in a Project of Operations Planning in the Context of Industry 4.0 by Using Bayesian Belief Networks (BBN)
Davi da Fonseca Vieira Junior Marinato, José Cristiano Pereira, Marcelo Póvoas, Antonio de Paula Pedrosa and Thomas Gonçalves Aragutti

TU1A 308 09:10 hrs
Functional Safety Assessment of Distributed Predictive Heating and Cooling Systems for Electric Delivery Vehicles
Yupak Satsrisakul, Ivo Haring, Mirjam Fehling-Kaschek, Hans Peter Selz, Peter Ambrus, Dominik Rehm, Walter Czarnecki, Antonio Sciarretta, Denis Guillaume and Jianmin Zhu

TU1A 348 09:30 hrs
Multi-obstacles Influence on High-Pressure Methane Jets
Giovanni Romano, Paolo Tombini, Pamela Blas and Valentina Busini
Comparative Risk Assessment and External Costs of Accidents for Passenger Transportation in Switzerland
Matteo Spada and Peter Burgherr

Session [TU1B]—Mathematical Methods in Reliability and Safety
Day/Date/Time Tuesday, 21 Sep. 2021/08:30–10:10 hrs
Venue Amphi Jardin

Importance Measures in Repairable Multistate Systems With Aging
Arne Bang Huseby and Madeleine Innholt Halle

Dynamic Grouping Maintenance Policy for the Road Infrastructure
Bram Najeh, Laurent Bouillaut, Dimitri Daucher and Maxime Redondin

Designing Reliability-Informed Customer Surveys
Neda Shafiei, Jeffrey W. Herrmann, Aaron Krive, Guneet Sethi and Mohammad Modarres

Fault Trees, Decision Trees, And Binary Decision Diagrams: A Systematic Comparison
Lisandro A. Jimenez-Roa, Tom Heskes and Marielle Stoelinga

Misspecification Analysis of a Gamma- With an Inverse Gaussian-Based Perturbed Degradation Model by Using a New Expectation Maximization Particle Filter Algorithm
Nicola Esposito, Agostino Mile, Bruno Castanier and Massimiliano Giorgio

Extension of the Concept of Importance To Multi-State Systems with Binary Components
Jacek Malinowski

Data Supplement Model for Virtual Simulation of Maintenance Time Test Based on Multilevel Iteration and Neural Network
Yan Wang, Dong Zhou, Qidi Zhou, Chao Dai, Honghu Wu, Yuning Liang and Chengzhang Chen

Modelling of Condition-Based Inspections and Deterministic Maintenance Delays for Bridge Management
Tianqi Sun and Jørn Vatn
A Step-by-Step Method to Analyze Reliability and Maintainability From Historical Data Considering Usage Variables and Expert Knowledge
Fredy Kristjanpoller, Tomás Grubessich, Raúl Stegmaier, Pablo Viveros and Oscar Aranda

Challenges in Reliability Estimation of Modified Technology Using Information from Qualification Testing – An Offshore Well Integrity Solenoid Valve Case
Jon Tømmerås Selvik and Hans Petter Lohne

The Safety Integrity of Mitigation Functions
Meine J.P. van der Meulen

On the Importance of Using Realistic Data for Safety System Calculations
Stein Hauge, Solfrid Håbrekke, Maria Vatshaug Ottermo, Lars Bodsberg and Mary Ann Lundteigen

The Benefit of ISO/TR 12489 for Reliability Modeling and Calculation of Safety Systems, Illustrated by Oil and Gas Applications
Florent Brissaud and Jean-Pierre Signoret

Impact of Imperfect Proof Testing on the Performance of Safety Instrumented Functions
EUR ING Ben J. Easton MSc CEng MIET

Safemode’s Approach for Incorporating Human Factors into Risk-informed Design
Clementina Ramirez-Marengo, Marta Llobet Lopez, Beatriz Návás De Maya, Evangelia Giagloglou, Andrew Kilner, Raffet Emek Kurt, Osman Turan, Barry Kirwan and Simone Pozzi
TU1E 404 08:50 hrs
Estimating Human Error Probabilities from Performance Measures: Demonstration Via Bayesian Belief Networks
Luca Podofillini and Vinh N. Dang

TU1E 405 09:10 hrs
An Approach to Sharing Human Performance Data and Findings in the International Nuclear Research Community
Rossella Bisio and Salvatore Massaiu

TU1E 417 09:30 hrs
A Metamodel Extension to Capture Post Normal Accidents in AR-equipped Socio-technical Systems
Soheila Sheikh Bahaei and Barbara Gallina

TU1E 418 09:50 hrs
Evaluating Electroencephalogram Channels using Machine Learning Models for Drowsiness Detection
Plínio Marcio da Silva Ramos, Caio Bezerra Souza Maior, Márcio José das Chagas Moura and Isis Didier Lins

Session [TU1F]—Health monitoring and predictive maintenance of offshore systems
Day/Date/Time Tuesday, 21 Sep. 2021/08:30–10:10 hrs
Venue Espace Grand Angle

TU1F 379 08:30 hrs
Internet of Underwater Things to Monitor Offshore Wind Turbines Fields
Fekher Khelifi, Benoît Parrein, Jean-Marc Rousseau, Hervé de Forges and Thierry Grousset

TU1F 735 08:50 hrs
A Model-Based Approach for Structural Health Monitoring of Wind Energy Assets
Caleyron Fabien, Delbos Frédéric, Leroy Jean-Marc, Hervé Adrien, Muñoz Zaniga Miguel, Girard Nicolas, Le Bourdel Colin, Alliot Lucas, Prieur Clémence and Arnaud Elise

TU1F 760 09:10 hrs
Incorporating Reliability Assessment in the Design Development & Optimization of Floating Structures
Mareike Leimeister

TU1F 764 09:30 hrs
A New Methodology For Fast Lifespan Prediction Of Offshore Structures
Blondet Gaëtan, Girard Sylvain, Heurtier Jean-Michel and Yalamas Thierry

TU1F 710 09:50 hrs
Berthing Criteria for Wind Turbine Crew Transfer Vessel with Low or High Friction Fender
Laurent Bartholemy
Session [TU1G]—Nuclear Industry
Day/Date/Time Tuesday, 21 Sep. 2021/08:30–10:10 hrs
Venue Atrium 3

TU1G 216 08:30 hrs 60
Probabilistic Modeling in a Bayesian Framework of Nuclear Containment Buildings Structural Tightness
Donatien Rossat, Julien Baroth, Frédéric Dufour, Matthieu Briffaut, Alexandre Monteil, Benoît Masson and Sylvie Michel-Ponnelle

TU1G 321 08:50 hrs 61
Risk Assessment Based on Event Tree for Loss of Cooling Accident at a vSMR
Nathália Nunes Ararú, Maritza Rodriguez Gual, Hugo da Costa Romberg Júnior, Marcos Coelho Maturana and Marcelo Ramos Martins

TU1G 327 09:10 hrs 62
Operational Safety Analysis of HANARO Research Reactor using STAMP/STPA
Sang Hun Lee, Sung-Min Shin, Jinkyun Park and Jeong Sik Hwang

TU1G 477 09:30 hrs 62
Evaluation of Risk Dilution Effects in Dynamic Probabilistic Risk Assessment of Nuclear Power Plants
Kotaro Kubo and Yoichi Tanaka

TU1G 479 09:50 hrs 62
Multi-Step Prediction Algorithm for Critical Safety Parameters at Nuclear Power Plants Using BiLSTM and AM
Hyojin Kim and Jonghyun Kim

Session [TU1H]—Aeronautics and Aerospace
Day/Date/Time Tuesday, 21 Sep. 2021/08:30–10:10 hrs
Venue Cointreau

Session [TU2K]—Economic Analysis in Risk Management
Day/Date/Time Tuesday, 21 Sep. 2021/10:25–11:45 hrs
Venue Atrium 1

TU2K 068 10:25 hrs 89
Towards Economically Efficient Security Risk Reduction
Vladimir Marbukh

TU2K 098 10:45 hrs 90
Prevented Damage as Efficiency Indicator of Inspection and Control Activity
Lesnykh Valery, Lukyanchikov Michail and Timofeeva Tatiana

TU2K 101 11.05 hrs 90
Towards Economically Efficient Mitigation of Systemic Risk of Undesirable Contagion
Vladimir Marbukh
TU2K 438 11:25 hrs
Contagion Model for Multi-Layer Financial Network Considering Heterogeneous Liquid Asset
Juxing Zhu and Ning Huang

Session [TU3A]—System Reliability
Day/Date/Time Tuesday, 21 Sep. 2021/15:20–16:20 hrs
Venue Auditorium

TU3A 091 15:20 hrs
Operation Strategy Optimization for Two-Unit Warm Standby Systems Considering Periodic Active Switching
Senyang Bai, Xiang Jia, Zhijian Cheng, Qian Zhao and Bo Guo

TU3A 063 15:40 hrs
NATO Dependability Standard: Overview of Recent Publications and Future Works
Hervé du Baret, Nicholas Barnett, Nicolas Boutet, Jason Gargrave, Andreas Kirchofer, Jenny Lee and Jonathan Zöhmer

TU3A 114 16:00 hrs
A Seamless Functional Hazard Analysis for a Fuel Cell System Supported by Spreadsheets
Axel Berres and Tim Bittner

Session [TU3B]—Risk Analysis and Safety in Standardization
Day/Date/Time Tuesday, 21 Sep. 2021/15:20–16:20 hrs
Venue Amphi Jardin

TU3B 027 15:20 hrs
Manually Clamping Workpieces – Identification of Safety-Relevant Parameters
Adrian Albero Rojas, Joachim Regel and Martin Dix

TU3B 006 15:40 hrs
Standardization in Risk Management Regulations: What Can We Learn From Scientific Literature?
Johan Ingvarson

TU3B 029 16:00 hrs
Experimental Investigation of The Kink Effect by Impact Tests on Polycarbonate Sheets
E. Uhlmann, M. Polte, R. Hörl, N. Bergström, S. Thom and P. Wittwer

Session [TU3C]—Degradation analysis and modelling for predictive maintenance
Day/Date/Time Tuesday, 21 Sep. 2021/15:20–16:20 hrs
Venue Espace Grand Angle 2

TU3C 079 15:20 hrs
Condition-Based Maintenance for Systems with Degradation Processes and Random Shock Under Warranty
Minjae Park
Technical Programme

| Session | TU3C 088 | 15:40 hrs | Modeling Multivariate Degradation Processes with Time-Variant Covariates and Imperfect Maintenance Effects
Xiaolin Wang, Olivier Gaudoin, Laurent Doyen, Christophe Berenguer and Min Xie |
|---------|-----------|-----------|---|
| TU3C 120 | 16:00 hrs | 94 | Degradation Modelling for Predictive Maintenance Under Various Operating and Environmental Conditions
Aurélien Cabarbaye, Adrien Cabarbaye, André Cabarbaye and Lip Sun How |

Session [TU3D]—Prognostics and Health Management: From Condition Monitoring to Predictive Maintenance

| Session | TU3D 214 | 15:20 hrs | Degradation Modeling Analysis for Microrobots Flexure Hinges Using Intracorporeal Surgeries
Liseth Pasaguayo, Zeina AL Masry and Sergio Lescano |
|---------|----------|-----------|---|
| TU3D 282 | 15:40 hrs | 95 | State of Health Estimation for Lithium-Ion Battery by Incremental Capacity Based ARIMA – SVR Model
Akash Basia, Zineb Simeu-Abazi, Eric Gascard and Peggy Zwolinski |
| TU3D 303 | 16:00 hrs | 95 | Defining Degradation States for Diagnosis Classification Models in Real Systems Based on Monitoring Data
Sergio Cofre-Martel, Camila Correa-Jullian, Enrique López Droguett, Katrina M. Groth and Mohammad Modarres |

Session [TU3E]—Risk management for the design, construction and operation of tunnels

| Session | TU3E 608 | 15:20 hrs | Barriers and Drivers for Safety Related Innovation Within the Norwegian Tunneling Industry
Tone Iversen, Brynhild Stavland and Henrik Bjelland |
|---------|----------|-----------|---|
| TU3E 623 | 15:40 hrs | 96 | Capacity Boost Tunnel Safety – Using the SSM Approach to Increase Impact
Tone Iversen, Brynhild Stavland and Henrik Bjelland |
| TU3E 626 | 16:00 hrs | 97 | A View on Asset Management Best Practices, Challenges and Risk in the Norwegian Oil & Gas and Tunnel Industry
Syed Taha, Ove Njå and Jawad Raza |
<table>
<thead>
<tr>
<th>Session</th>
<th>[TU3F]—Probabilistic vulnerability estimation, lifetime assessment and climate change adaptation of existing and new infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day/Date/Time</td>
<td>Tuesday, 21 Sep. 2021/15:20–16:20 hrs</td>
</tr>
<tr>
<td>Venue</td>
<td>Espace Grand Angle</td>
</tr>
<tr>
<td>97</td>
<td></td>
</tr>
<tr>
<td>TU3F 530 15:20 hrs</td>
<td>Quantitative Assessment of the Impact of Climate Change on Creep of Concrete Structures
Amro Nasr, Erik Kjellström, Oskar Larson-Ivanus, Jonas Johansson, Ivar Björnsson and Dániel Honfi</td>
</tr>
<tr>
<td>97</td>
<td></td>
</tr>
<tr>
<td>TU3F 540 15:40 hrs</td>
<td>Influence of Concrete’s Mechanical Properties on the Cracking of Concrete Dams
Adrian Ulfberg, Andreas Seger, Dipen Bista, Marie Westberg Wilde, Fredrik Johansson, Oisik Das and Gabriel Sas</td>
</tr>
<tr>
<td>97</td>
<td></td>
</tr>
<tr>
<td>TU3F 591 16:00 hrs</td>
<td>The Indirect Impact of Flooding on the Road Transport Network: A Case Study of Santarém Region in Portugal
Fereshteh Jafari Shahdani, Mónica Santamaria-Ariza, Mário Coelho, Helder S. Sousa and José C. Matos</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session</th>
<th>[TU3G]—Asset management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day/Date/Time</td>
<td>Tuesday, 21 Sep. 2021/15:20–16:20 hrs</td>
</tr>
<tr>
<td>Venue</td>
<td>Atrium 3</td>
</tr>
<tr>
<td>99</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td></td>
</tr>
<tr>
<td>TU3G 083 15:40 hrs</td>
<td>Framework for the Implementation of Smart Maintenance
Tom Ivar Pedersen and Cecilia Haskins</td>
</tr>
<tr>
<td>99</td>
<td></td>
</tr>
<tr>
<td>TU3G 121 16:00 hrs</td>
<td>Improving Visual Inspection Reliability in Aircraft Maintenance
Victor Hrymak and Patrick Codd</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session</th>
<th>[TU3H]—Railway Industry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day/Date/Time</td>
<td>Tuesday, 21 Sep. 2021/15:20–16:20 hrs</td>
</tr>
<tr>
<td>Venue</td>
<td>Cointreau</td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
<tr>
<td>TU3H 141 15:20 hrs</td>
<td>STPA-Based Safety Analysis of Virtual Coupling Scenarios
Yiming Yang, Fei Yan, Ru Niu and Chunhai Gao</td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Formal Modeling of a New On-Board Train Integrity System ETCS Compliant

Insaf Sassi, Mohamed Ghazel and El-Miloudi El-Koursi

Session [TU3H]—Model Based Safety Assessment

Day/Date/Time Tuesday, 21 Sep. 2021/15:20–16:20 hrs

Venue Giffard

“K6 Telecom”, a Dynamic Component Library to Lead Model-Based Safety Analysis for Critical Communication Networks

Legendre Anthony, Druet Jules, Sanchez-Torres José and Carre Philippe

Benefits of Graphical Animation of Advanced AltaRica 3.0 Models

Michel Batteux, Walid Bennaceur, Tatiana Prosvirnova and Antoine Rauzy

Flexibility of Analysis Through Knowledge Bases

Ola Backström, Marc Bouissou, Pavel Krcal and Pengbo Wang

Session [TU3J]—Seismic reliability assessment

Day/Date/Time Tuesday, 21 Sep. 2021/15:20–16:20 hrs

Venue Botanique 2

Methodology on the Combination of Seismic Correlation Coefficient for Probabilistic Seismic Risk Assessment

Si Young Kim, Seung Jae Lee, Jin Wook Lee and Jung Han Kim

Dynamic Updating of Building Loss Predictions Using Regional Risk Models and Conventional Post-Earthquake Data Sources

Lukas Bodenmann, Yves Reuland and Bozidar Stojadinovic

Modelling Seismic Damage Accumulation and Recovery in Aftershock Sequences

Eugenio Chioccarelli, Massimiliano Giorgio and Iunio Iervolino

Session [TU3K]—Accelerated Life Testing & Accelerated Degradation Testing

Day/Date/Time Tuesday, 21 Sep. 2021/15:20–16:20 hrs

Venue Atrium 1

Life Prediction and Test Verification of Bearings Based on Wiener Degradation Model and Bayes Method

Wei Dai, Shouqing Huang, Yong Yang, Taichun Qin and Zemin Yao
TU3K 138 15:40 hrs
Parameter Estimation of Accelerated Lifetime Testing Models Using an Efficient Approximate Bayesian Computation Method
Mohamed Rabhi, Anis Ben Abdessalem, Laurent Saintis, Bruno Castanier and Rodrigue Sohoin Koffisse

TU3K 002 16:00 hrs
Solid State Drive (SSD) End to End (e2e) Reliability Prediction, Characterization and Control
Mohd Azman Abdul Latif and Erwan Basiron

Session [TU4A]—System Reliability
Day/Date/Time
Tuesday, 21 Sep. 2021/16:30-17:30 hrs

Venue
Auditorium

TU4A 122 16:30 hrs
Evaluating the Application Availability of Intelligent Optical Networks Based on the Network Evolution Model
Zhixi Yi, Ning Huang and Huangxilong Cai

TU4A 217 16:50 hrs
Adaptive Faults Diagnosis and Reasoning Method Based on MFM
Huizhou Liu, Jinqiu Hu, Jing Wu and Morten Lind

Session [TU4B]—Mathematical Methods in Reliability and Safety
Day/Date/Time
Tuesday, 21 Sep. 2021/16:30-17:30 hrs

Venue
Amphi Jardin

TU4B 286 16:30 hrs
Self-Exciting Jump Processes as Deterioration Models
Kristina Rognlien Dahl and Heidar Eyjolfsson

TU4B 369 16:50 hrs
Estimating Fatigue Curves with Mixture Fatigue-Limit Model
Juan Wang

Session [TU4C]—Maintenance Modeling and Applications
Day/Date/Time
Tuesday, 21 Sep. 2021/16:30-17:30 hrs

Venue
Espace Grand Angle 2

TU4C 381 16:30 hrs
Optimal Maintenance Interval for An Aging Distributed Generation System
Jackson Lee and Huadong Ma
TU4C 454 16:50 hrs
A Disassembly Path Planning Method for Mechanical Products in Narrow Passages Based on Improved RRT-connect Algorithm
Yuning Liang, Dong Zhou, Hongduo Wu, Qidi Zhou and Yan Wang

TU4C 455 17:10 hrs
Joint Optimization of Maintenance Scheduling and Performance of Networked Systems
Luoanli Wang, Wenjin Zhu and Shubin Si

Session [TU4D]—Prognostics and Health Management: From Condition Monitoring to Predictive Maintenance
Day/Date/Time Tuesday, 21 Sep. 2021/16:30–17:30 hrs
Venue Panoramique

TU4D 380 16:30 hrs
Robust Sensor Fault Detection for Linear Parameter-Varying Systems using Interval Observer
Thomas Chevet, Thach Ngoc Dinh, Julien Marzat and Tarek Raissi

TU4D 421 16:50 hrs
Embedded Feature Importance Determination Technique for Deep Neural Networks-Based Prognostics and Health Management
Joaquín Figueroa Barraza, Enrique López-Drogueyt and Marcelo Ramos Martínez

Session [TU4E]—Socio-Technical-Economic Systems
Day/Date/Time Tuesday, 21 Sep. 2021/16:30–17:30 hrs
Venue Amphi Jardin

TU4E 124 16:30 hrs
Risk Management Plan for Technical Facility Operation
Dana Prochazkova and Jan Prochazka

TU4E 473 16:50 hrs
Challenges of Safety- and Crisis Management Training During Covid19
Hege C. Stenhammer and Gunhild B. Sætren

Session [TU4F]—Probabilistic vulnerability estimation, lifetime assessment and climate change adaptation of existing and new infrastructure
Day/Date/Time Tuesday, 21 Sep. 2021/16:30–17:30 hrs
Venue Espace Grand Angle

TU4F 654 16:30 hrs
Stochastic River Flow Forecasting Using a Markov-Switching Autoregressive Model
Bassel Habib, Emilio Bastidas-Arteaga and Mauricio Sánchez-Silva
Sensitivity and Reliability Analysis for Reinforced Concrete Structures Subjected to Cyclic Loading Using a Polynomial Chaos
Henriette Marlaine Imounga, Emilio Bastidas-Arteaga, Rostand Moutou Pitti, Serge Ekomy and Charbel-Pierre El Soueidy

Empirical Analysis of Ship Anchor Drag Incidents for Cable Burial Risk Assessments
Andrew Rawson and Mario Brito

Stakeholder Network Analysis for Safe LNG Storage and Bunkering at Ports
Ioanna Koromila, Olga Aneziris, Zoe Nivolianitou, Aggeliki Deligianni, Evangelos Bello and Vassilis Leopoulou

Data Safety, Sources, and Data Flow in the Offshore Industry
T. Myklebust, T. Onrust, S. Lindskog, M. Vatschaug Ottermo and L. Bodsberg

Reliability Evaluation of a Data Communication System for a Flying Experimental Platform
Gianpiero Buzzo, Lidia Travascio and Angela Vezella

Actuator Load Estimation From Distributed Optical Sensing of Airframe Deformation
Gaetano Quattrocchi, Pier Carlo Berri, Matteo Davide Lorenzo Dalla Vedova and Paolo Maggiore

Environmental Sensitivity of Fiber Bragg Grating Sensors for Aerospace Prognostics
Matteo D.L. Dalla Vedova, Pier Carlo Berri and Alessandro Aimasso

Eight Years of Collaborative Research on Industrial Safety within SAFRA Partnership
Paolo Bragatto, Patrizia Agnello, Olivier Sales and Eric Marsden
<table>
<thead>
<tr>
<th>Session</th>
<th>Day/Date/Time</th>
<th>Venue</th>
</tr>
</thead>
<tbody>
<tr>
<td>TU4I 448</td>
<td>16:50 hrs</td>
<td>115</td>
</tr>
<tr>
<td>TU4I 576</td>
<td>17:10 hrs</td>
<td>115</td>
</tr>
<tr>
<td>Information- and Cyber-Security Practices as Inhibitors to Digital Safety</td>
<td></td>
<td></td>
</tr>
<tr>
<td>John Eidar Simensen and Bjørn Axel Gram</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TU4I 660</td>
<td>16:30 hrs</td>
<td>115</td>
</tr>
<tr>
<td>State-Dependent Seismic Fragility Functions for Italian Reinforced Concrete Structures: Preliminary Results</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mabel Orlacchio, Eugenio Chioccarelli, Georgios Baltzopoulos and Iunio Iervolino</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TU4I 666</td>
<td>16:50 hrs</td>
<td>116</td>
</tr>
<tr>
<td>Predicting Seismic Response of a Tall Building to a Large Earthquake Using Recorded Waveforms from Small Earthquakes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilgün Merve Çağlar and Erdal Safak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TU4I 712</td>
<td>17:10 hrs</td>
<td>117</td>
</tr>
<tr>
<td>Practical Issues in Sequential Dynamic Analysis of Simple Inelastic Oscillators</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. Baltzopoulos, Roberto Baruchino and Iunio Iervolino</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TU4K 733</td>
<td>16:30 hrs</td>
<td>117</td>
</tr>
<tr>
<td>Accelerated Test Design of Aero Generator Based on Text Mining</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yao Jinyong and Jie Ma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TU4K 692</td>
<td>16:50 hrs</td>
<td>117</td>
</tr>
<tr>
<td>Design Optimization for the Step-Stress Accelerated Degradation Test under Tweedie Exponential Dispersion Process</td>
<td></td>
<td></td>
</tr>
<tr>
<td>David Han</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TU4K 411</td>
<td>17:10 hrs</td>
<td>118</td>
</tr>
<tr>
<td>A New Estimation Method for Automotive Multidimensional Metrics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abderrahim Krini and Josef Borcsók</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Technical Programme

eSReI 31st European Safety and Reliability Conference

19–23 September 2021, Angers, France
Day 3: Wednesday, 22 September 2021 — [Parallel]

<table>
<thead>
<tr>
<th>Session</th>
<th>[WE1A] — System Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day/Date/Time</td>
<td>Wednesday, 22 Sep. 2021/08:30–10:10 hrs</td>
</tr>
<tr>
<td>Venue</td>
<td>Auditorium</td>
</tr>
<tr>
<td>WE1A 218</td>
<td>08:30 hrs</td>
</tr>
<tr>
<td>Utilization of Multilevel Flow Modelling to Support Passive Safety System Reliability Assessment</td>
<td>Zhiao Huang, Morten Lind, Xinxin Zhang, Jing Wu and Huifang Miao</td>
</tr>
<tr>
<td>WE1A 283</td>
<td>08:50 hrs</td>
</tr>
<tr>
<td>WE1A 306</td>
<td>09:10 hrs</td>
</tr>
<tr>
<td>Dynamic Reliability Approach for a Complex Offshore System</td>
<td>Hlunguane, J. Alcebides E., Chatlel, Eric and Kouta, Raed</td>
</tr>
<tr>
<td>WE1A 313</td>
<td>09:30 hrs</td>
</tr>
<tr>
<td>Sub-Safety Recognition and Reliability Evaluation for Motor Drive System in High Speed Trains</td>
<td>Linghui Meng, Zhenwei Zhou and Shilie He</td>
</tr>
<tr>
<td>WE1A 317</td>
<td>09:50 hrs</td>
</tr>
<tr>
<td>Efficient System Reliability Demonstration Tests Using the Probability of Test Success</td>
<td>Alexander Grundler, Martin Dazer, Thomas Herzig and Bernd Berthes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session</th>
<th>[WE1B] — Mathematical Methods in Reliability and Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day/Date/Time</td>
<td>Wednesday, 22 Sep. 2021/08:30–10:10 hrs</td>
</tr>
<tr>
<td>Venue</td>
<td>Amphi Jardin</td>
</tr>
<tr>
<td>WE1B 406</td>
<td>08:30 hrs</td>
</tr>
<tr>
<td>An Application of Semi-Supervised to Production Data</td>
<td>Dominik Brueggeann, Marcin Hinz and Stefan Bracke</td>
</tr>
<tr>
<td>WE1B 488</td>
<td>08:50 hrs</td>
</tr>
<tr>
<td>Reliability Analysis of the On-Board Flight and Navigation Equipment on the Aircraft</td>
<td>Mariusz Zielin, Justyna Tomaszewska, Marta Woch, Bartholomej Glownczyk and Piotr Kaczorowski</td>
</tr>
<tr>
<td>WE1B 491</td>
<td>09:10 hrs</td>
</tr>
<tr>
<td>Optimization-Based Reliability Assessment of Multi-Energy Systems</td>
<td>Raphael Wu, Emanuela Bussino, Stefano Bracco, Silvia Siri, Paolo Gabrielli and Giovanni Sansavini</td>
</tr>
<tr>
<td>WE1B 497</td>
<td>09:30 hrs</td>
</tr>
<tr>
<td>Graph Representation of Logic Differential Calculus for Reliability Modeling of Coherent Binary State Systems</td>
<td>Miroslav Krusnay, Elena Zaitseva, Jan Rabcan, Vitaly Levashenko, Jean-François Aubry and Nicolae Brinzei</td>
</tr>
</tbody>
</table>
Technical Programme

Session [WE1B]—Digital twin approach in maintenance and safety engineering
Day/Date/Time Wednesday, 22 Sep. 2021/08:30–10:10 hrs
Venue Espace Grand Angle 2

About Bounded Transformations of the Gamma Degradation Process
Massimiliano Giorgio and Gianpaolo Pulcini

Day/Date/Time 09:50 hrs

WE1C 070 08:30 hrs
Digital Twin-Based Prognostics and Health Management for Subsea systems: Concepts, Classification, Opportunities and Challenges
M. Abbas, Y. Liu and B. Cai

WE1C 246 08:50 hrs
A Survey on the Use of Digital Twins for Maintenance and Safety in the Offshore Oil and Gas Industry
Tom Ivar Pedersen, Håkan Gratt Standal, Håvard Holm Bjørnebekk and Jørn Vatn

WE1C 341 09:10 hrs
Reliability Digital Twin Approach Based on Bayesian Method for Brake Pad Wear Monitoring
Bo Sun, Fusheng Jiang, Xi Yang, Zeyu Wu, Jianlin Pan, Qiang Feng, Dezhen Yang and Yi Ren

WE1C 365 09:30 hrs
Application of Digital Twins in Condition-Based Maintenance
Chao Yang, Baoping Cai, Xiaoyan Shao, Yonghong Liu, Yilin Liu, Qiang Feng, Guijie Liu and Honghui Wang

WE1C 373 09:50 hrs
A Usage-Driven Approach to Characterize and Implement Industrial Digital Twins
Nathalie Julien and Eric Martin

Session [WE1D]—Flexible Tolerancing Analysis of Complex Structures and Assemblies
Day/Date/Time Wednesday, 22 Sep. 2021/08:30–10:10 hrs
Venue Panoramique

WE1D 722 08:30 hrs
Fastening Process Simulation of Structural Parts with Shape Defects
Ramzi Askri and Christophe Bois

WE1D 724 08:50 hrs
Statistical Tolerance Analysis of Over-Constrained Mechanical Systems Using Tolsis Software
Antoine Dumas, Pierre-Alain Rance, Jean-Yves Dantan and Nicolas Gayton

WE1D 726 09:10 hrs
Tolerancing Analysis of Complex Assemblies with Surrogate Chaos and Kriging Meta-Models
Tanguy More

WE1D 751 09:30 hrs
Toward a Normalized Method to Evaluate the Quality and the Relevance of a Linear Approximation for Tolerance Analysis and Synthesis
Judic Jean-Marc
<table>
<thead>
<tr>
<th>Session</th>
<th>Day/Date/Time</th>
<th>Venue</th>
</tr>
</thead>
<tbody>
<tr>
<td>WE1D</td>
<td>09:50 hrs</td>
<td></td>
</tr>
<tr>
<td>WE1E</td>
<td>09:30 hrs</td>
<td></td>
</tr>
<tr>
<td>WE1E</td>
<td>08:30 hrs</td>
<td></td>
</tr>
<tr>
<td>WE1E</td>
<td>08:50 hrs</td>
<td></td>
</tr>
<tr>
<td>WE1E</td>
<td>09:10 hrs</td>
<td></td>
</tr>
<tr>
<td>WE1E</td>
<td>09:30 hrs</td>
<td></td>
</tr>
<tr>
<td>WE1E</td>
<td>09:50 hrs</td>
<td></td>
</tr>
</tbody>
</table>

WE1D 754 09:50 hrs
Tolerance Analysis of a Wiper Blade Using the Probabilistic Approach
Pierre Beaurepaire

Session WE1E—Organizational Factors and Safety Culture
Day/Date/Time
Wednesday, 22 Sep. 2021/08:30–10:10 hrs
Venue
Amphi Jardin

WE1E 092 08:30 hrs
Preconditions for Learning from Fires in Norway – Structural, Cultural, Technological, Interactional and Relational Aspects
Asbjørn Lein Aalberg, Siri Mariane Holen, Edvard Aamodt and Anne Elise Steen Hansen

WE1E 159 08:50 hrs
Innovative Road Safety Education Program
Isabelle Roche Cerasi, Dagfinn Moe, Jo Skjerma and Jan Petter Wigum

WE1E 284 09:10 hrs
Security of Electricity Supply in the Transition Toward Smarter Grids
Stian Antonsen, Tor Olav Grøtan, Oddbjørn Gjerde and Maren Istad

WE1E 288 09:30 hrs
Prevention and Management of Industrial Risk Through Effective Citizen-Facing Communication from Authorities: The Experience of Regione Lombardia in Italy
Fabio Borghetti, Giovanna Marchianni, Marco Ponti, Andrea Delle Monache, Pietro Lucia and Annamaria Ribando

WE1E 295 09:50 hrs
Getting Realism Into a Participative Framework for Operational Risk Analysis
Florent Brissaud and Romuald Perinet

WE1F 010 08:30 hrs
Probabilistic Determination of the Phreatic Line in River Levees Under Steady-State Conditions and its Effect on the Stability Statement
Niklas Schwiersch, Bennet Dumke and Jürgen Stamm

WE1F 160 08:50 hrs
Fire in Railway Tunnels Dynamic Simulation: Structural Assessment and Effects Mitigation
Martini Francesco, Quattrini Alessandro, Quattrini Andrea and Ricci Stefano

WE1F 242 09:10 hrs
The Importance of Implementing Building Information Modeling, Risk Analysis and its Impacts on a Real Estate Development: A Case Study
Alexandre Gomes Vinagre, Marcelo Póvoas, Matheus Bastos de Almeida and José Cristiano Pereira
A Stochastic Simulation Scheme for the Estimation of Small Failure Probabilities in Wind Engineering Applications

Srinivasan Arunachalam and Seymour M.J. Spence

The Importance of Maintaining the Brazilian Habitat Quality and Productivity Program (PBQP-H), Risk Analysis and the Impact on the Maintenance of Civil Construction Companies Certification. A Case Study

Matheus Bastos de Almeida, José Cristiano Pereira and Nélio D. Pizzolato

An Integrated Functional Modelling Framework Applied for Operations and Maintenance

Jing Wu

A Look at the Influence of Hydraulic Power Generator Operation on Hydraulic Passages

Cecilia Lazar, Martin Gagnon and Georges Abdul-Nour

Comprehensive Method for Improving Asset Integrity Management

Mohammed Alotaibi and Matthew Revie

Techniques for Assets’ Criticality Judgement

Tomáš Kertis and Dana Procházkova

Applying Cluster Analysis to Support Failure Management Policy Selection in Asset Management: A Hydropower Plant Case Study

Renan Favarão da Silva, Arthur Henrique de Andrade Melani, Miguel Angelo de Carvalho Michalski and Gilberto Francisco Martha de Souza

Fail-Aware Concept for Autonomous Driving Cars

Horst Lewitschnig and Lukas Sommeregger

Probabilistic Fatigue and Reliability Simulation

Marco Bonato and Amaury Chabod
Outliers Detection at the Lower Tail of A Small Statistical Sample Originated from Test Results of Strength
Lambert Pierrat and Marco Bonato

Faster and More Accurate Industrial Reliability Predications From Data Mining Using AI Methods
Philippe Goge and Murali Krishnamoorthy

Stratégie et Analyses : Comment anticiper l’augmentation de la durée des périodes garantie?
Caroline Ranieux Serment and Lavanya Bonvin Stellantis

A State-of-the-Art Review on IC EMC Reliability
Jaber Al Rashid, Mohsen Koohestani, Laurent Saintis and Mihaela Barreau

Peter – A Pan-European Training, Research and Education Network on Electromagnetic Risk Management
Davy Pissoort

Assuring Shielded Cables as EMI Mitigation in Automotive ADAS
Oskari Leppäaho, Mark Nicholson, Frédéric Lafon and Mohammed Ramdani

Knowledge-Based Approach for System Level Electromagnetic Safety Analysis
Lokesh Devaraj, Alastair R. Ruddle, Qazi Mashaal Khan and Alastair P. Duffy

Evaluation of EMI Risks
Frank Sabath

Evaluation of the Resilience of the Baltic Power System When Operating in Island Mode
Dmitrijs Guzs, Andrejs Utans and Antans Sauhats

Comparative Evaluation of the Reliability and Vulnerability of Electrical Networks with a High Share of Renewable Generation
Jesus Beyza and Jose M. Yusta
WE1J 143 09:10 hrs Modeling Environment Dependency in Partially Observable Markov Decision Processes for Maintenance Optimization
 Ragnar Eggertsson, Rob Basten and Geert-Jan van Houtum

WE1J 170 09:30 hrs Interactive Method of Knowledge Elicitation and Simulation: Heuristic-Based Restoration Planning of Water Supply Systems
 Taro Kanno, Kento Wakayama and Yoji Kawase

WE1J 239 09:50 hrs Strengthening Resilience in Critical Infrastructure Systems: A Deep Learning Approach for Smart Early Warning of Critical States
 Stella Möhrle, Sadeeb Simon Ottenburger, Tim Oliver Müller, Dmytro Trybushnyi, Ezgenia Deines and Wolfgang Raskob

WE1K 246 08:30 hrs A Scientific Approach to Get a GRIP on Practical Robot Safety
 Wouter Martinus Petrus Steijn, Jeroen van Oosterhout and Coen van Gulijk

WE1K 293 08:50 hrs A Review of Risk Control Regulations and Practices on BPA in the EU and China
 Yujie Liu, Ya Chen, Olivier Salvi, Zakarias Masrour, Marguerita El Bouzidi and Yan Zhao

WE1K 403 09:10 hrs The Emergence of Netcentric Principles in Dutch Safety-Experts Networks During the Covid Crisis
 Coen van Gulijk

WE1K 578 09:30 hrs Smart System for Worker Safety: Scenarios and Risk
 Francesca Santucci, Roberto Setola, Ernesto Del Prete, Fabio Pera and Maria Grazia Gnoni

WE1K 614 09:50 hrs The Use of Proportional (Flow) Control Valves in Operating Machines: Energy Efficiency and Safety
 Pirozzi Marco, Landi Luca, Di Donato Luciano, Tomassini Laura and Ferraro Alessandra

WE2A 037 10:25 hrs Multicriteria Risk Visualization Tools in Networks of Natural Gas Pipelines
 Ramon Swell Gomez Rodrigues Casado, Francisco Filipe Cunha Lima Viana, Lucas Borges Leal da Silva, Marcelo Hazin Alencar, Rodrigo José Pires Ferreira and Adiel Teixeira de Almeida
WE2A 072 10:45 hrs
Risk Register Database to Improve Organizational Resilience and Knowledge Management
Arto Niemi, Tobias Hobbel and Frank Sill Torres

WE2A 137 11:05 hrs
Cyber Security for Medical Devices from a Risk Management Perspective: a Case Study
Roberto Filippini, Nina Bersenkowitcz and Mario Schrenk

WE2A 198 11:25 hrs
The Aftermath of 26 September 2019 Accident: A Focus on Risk-Related Policy Analysis
Scarlett Tannous, Myriam Merad and Jan Hayes

Session [WE2B]—Mathematical Methods in Reliability and Safety

WE2B 558 10:25 hrs
Detailed Repair Modeling in a Scalable Dynamic Analysis
Pavel Krcal, Pengbo Wang and Ola Backstrom

WE2B 568 10:45 hrs
Reliability of Noisy Intermediate Scale Quantum Computers: A Network Reliability Approach
Christian Tanguy

WE2B 579 11:05 hrs
City Bus Reliability Assessment Based on State Space Models
David Valis, Kamila Hasilova and Joanna Rymarz

Session [WE2C]—Bayesian network for reliability modeling and maintenance optimisation

WE2C 128 10:25 hrs
Development of a Bayesian Updating Model for O&M Planning of Offshore Wind Structures
Tobi Eliasakin and Mahmoud Shafiee

WE2C 598 10:45 hrs
Unsupervised Co-Training of Bayesian Networks for the Diagnosis of Machining Spindle
Mathilde Monvoisin, Philippe Leray and Mathieu Ribou
Technical Programme

Session	WE2C 705 11:05 hrs	145
Day/Date/Time | Wednesday, 22 Sep. 2021/10:25–11:45 hrs
Venue | Panoramique
Presentation Title | Quantitative System Risk Assessment from Incomplete Data
Authors | Simon Wilson, Cristina De Persis, José Luis Bosque and Irene Huertas Garcia
Session | WE2D 396 10:25 hrs | 146
Day/Date/Time | Wednesday, 22 Sep. 2021/10:25–11:45 hrs
Venue | Panoramique
Presentation Title | New Mixture Distribution Model for Mapping and Analyzing Different Failure Mechanism Caused by Different Stresses
Authors | Franz-Georg Neupert and Stefan Bracke
Session | WE2D 426 10:45 hrs | 146
Day/Date/Time | Wednesday, 22 Sep. 2021/10:25–11:45 hrs
Venue | Panoramique
Presentation Title | Prediction of Remaining Useful Life Via Self-Attention Mechanism-Based Convolutional Long Short-Term Memory Network
Authors | Jiusi Zhang, Shen Yin, Hao Luo and Muhammad Gibran Alfariz
Session | WE2D 475 11:05 hrs | 146
Day/Date/Time | Wednesday, 22 Sep. 2021/10:25–11:45 hrs
Venue | Panoramique
Presentation Title | RUL Prediction of Bearings Using Empirical Wavelet Transform and Bayesian Approach
Authors | Bahareh Tajiani and Jørn Vatn
Session | WE2D 521 11:25 hrs | 147
Day/Date/Time | Wednesday, 22 Sep. 2021/10:25–11:45 hrs
Venue | Panoramique
Presentation Title | A Comprehensive Parameter Study Regarding the Neural Networks Based Monitoring of Grinded Surfaces
Authors | Marcin Hinz, Lea Hannah Guenther and Stefan Bracke
Session | WE2E 113 10:25 hrs | 147
Day/Date/Time | Wednesday, 22 Sep. 2021/10:25–11:45 hrs
Venue | Amphitheatre
Presentation Title | Operational Design Domain for Cars Versus Operational Envelope for Ships: Handling Human Capabilities and Fallbacks
Authors | Ørnulf Jan Rødseth, Håvard Nordahl, Lars Andreas Lien Wennersberg, Bård Myhre and Stig Petersen
Session | WE2E 193 10:45 hrs | 148
Day/Date/Time | Wednesday, 22 Sep. 2021/10:25–11:45 hrs
Venue | Amphitheatre
Presentation Title | Road Marking Characterization for ADAS Machine Vision Reliability
Authors | Abdessamad El Krine, Joffrey Girard, Maxime Redondin, Christophe Heinkele, Aude Stresser and Valérie Mazet
Session | WE2E 412 11:05 hrs | 148
Day/Date/Time | Wednesday, 22 Sep. 2021/10:25–11:45 hrs
Venue | Amphitheatre
Presentation Title | Cybersecurity Assurance Challenges for Future Connected and Automated Vehicles
Authors | Luis-Pedro Cobos, Alastair R. Ruddle and Giedre Sabaliauskaite
Session | WE2E 470 11:25 hrs | 149
Day/Date/Time | Wednesday, 22 Sep. 2021/10:25–11:45 hrs
Venue | Amphitheatre
Presentation Title | Resilience in Autonomous Shipping
Authors | K. E. Fjørtoft and O.E. Markrid
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Day/Date/Time</th>
<th>Venue</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Energy and Telecommunications Networks Interdependency: Resilience Challenges</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Guillame Boumier, Patrick Coudray, Bertrand Decoq, Jose Sanchez Torres and Jose Sanchez Vilchez</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dynamic Orchestration of Communication Resources Deployment for Resilient Coordination in Critical Infrastructures Network</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Khalid Saqab, Benoit Lemoine, Anne Barros, Yi-Ping Fang and Zhiguo Zeng</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Towards a Realistic Topological and Functional Modeling for Vulnerability Analysis of Interdependent Railway and Power Networks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Andrea Belle, Zhiguo Zeng, Marc Sango and Anne Barros</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A Risk and Resilience Assessment Approach for Railway Networks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Natalie Miller, Yupak Satsrisakul, Katja Faist, Mirjam Fehling-Kaschek, Stephen Crabbe, Mauro Feihling-Kaschek, Nader Naderpajouh, Sujeeva Setunge, Salih Ergun, Alyer Kanak, Sercan Tanrseven, Alexios Lekidis, Emmanuel Matsuda, Philipp Sick and Eros Cazzato</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reliability of Spur Gears - Determination of Stress-Dependent Weibull Shape Parameters for Tooth Root Fracture</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Axel Baumann, Jochen Juskowiak and Bernd Bertsche</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bending Fatigue Analysis of a Steel Cable on the UCP MEA1000 Machine – A Reliability Case Study</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bruno de Figueiredo Moitinho, Jocistina Pereira and Ricardo Francisco</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Analysis of the Reliability of Training Helicopters</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mariusz Zieja, Mariusz Michalbki, Justyna Tomaszewska, Lukasz Faber and Pawel Zajc</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Probabilistic Mixed Mode Fatigue Crack Growth Analysis Considering Spatially Varying Uncertainties</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stephanie Chahine, Hassen Riahi and David Bigaud</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Technical Programme

Session [WE2H]—Railway Industry

<table>
<thead>
<tr>
<th>Day/Date/Time</th>
<th>Venue</th>
<th>Paper Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A Complete Streaming Pipeline for Real-time Monitoring and Predictive Maintenance</td>
<td>Minh-Huong Le-Nguyen, Fabien Turgez, Pierre-Emmanuel Fayemi and Albert Bifet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Implications of Cyber Security to Safety Approval in Railway</td>
<td>Eivind H. Okstad, Robert Bains, Thor Myklebust and Martin G. Jaatun</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Towards a Specified Operational Design Domain for a Safe Remote Driving of Trains</td>
<td>Abhimanyu Tonk, Abderraouf Boussif, Julie Bengin and Simon Collart-Dutilleul</td>
</tr>
</tbody>
</table>

Session [WE2I]—Artificial intelligence for reliability assessment and maintenance decision-making

<table>
<thead>
<tr>
<th>Day/Date/Time</th>
<th>Venue</th>
<th>Paper Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Artificial Neural Networks and Differential Evolution for Optimal Maintenance Planning</td>
<td>Jerome Lonchampt and Emilie Daustreme</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reinforcement Learning for Maintenance Decision-Making of Multi-State Component Systems with Imperfect Maintenance</td>
<td>Van-Thai Nguyen, Phuc Do, Alexandre Voisin and Benoit Iung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predictive Maintenance of Natural Gas Regulators by Forecasting Output Pressure with Artificial Intelligence Algorithms</td>
<td>Amel Belouness, Florent Brissaud, and Papa Faly Ba</td>
</tr>
</tbody>
</table>
Session [WE2J]—Advancements in Resilience Engineering of Critical Infrastructures

Day/Date/Time Wednesday, 22 Sep. 2021/10:25–11:45 hrs
Venue Botanique 2

WE2J 357 10:25 hrs
A Resilience Evaluation Framework for Complex and Critical Systems
Santhosh TV and Edoardo Patelli

WE2J 367 10:45 hrs
Cascading Failure Analysis for Power System Vulnerability Assessment
Blazhe Gjorgiev and Giovanni Sansavini

WE2J 554 11:05 hrs
Gas Network Resilience Enhancement By Quantitative Prioritization of Main Valves for Scada Connection
Vytis Kopustinskas, Bogdan Vamanu, Vladislavas Daškevičius and Andrius Dagys

WE2J 584 11:25 hrs
Conceptual Approach Towards a Combined Risk and Resilience Framework for Interdependent Infrastructures
Stefan Schauer, Martin Latzenhofer, Sandra König and Stefan Rass

Session [WE2K]—Autonomous Driving Safety

Day/Date/Time Wednesday, 22 Sep. 2021/10:25–11:45 hrs
Venue Atrium 1

WE2K 052 10:25 hrs
Clarification of Discrepancies in the Classification of 1oo2 and 2oo2 Architectures Used for Safety Integrity in Land Transport
Ales Filip, Roberto Capua, Alessandro Neri and Pietro Salvatori

WE2K 087 10:45 hrs
Trust Me, We Have a Safety Case for the Public
Thor Myklebust, Tor Stålham, Gunnar Deinboll Jenssen and Inga Sofie Haug

WE2K 106 11:05 hrs
Traffic Psychology in Digital Drive: Deceptive Safety by Corrosion of Agency
Fred Størseth

WE2K 147 11:25 hrs
Trust and Acceptance of Self-Driving Buses
Tor Stålham, Thor Myklebust and Inga S. Haug
Technical Programme

Session [WE3A]—Risk Assessment

Day/Date/Time: Wednesday, 22 Sep. 2021/14:00-15:00 hrs
Venue: Auditorium

- **WE3A 397 14:00 hrs**
 Covid-19 Pandemic: Analyzing of Different Pandemic Control Strategies Using Saturation Models
 Stefan Bracke and Lars Grams

- **WE3A 423 14:20 hrs**
 A Systemic Approach for Preliminary Risk Analysis of Cybersecurity of Industrial Control Systems
 Jean-Marie Flaus and John Georgakis

- **WE3A 425 14:40 hrs**
 Risk Analysis of Emergency Operations in Presence of Limited Prior Knowledge
 Xia An and Huixing Meng

Session [WE3B]—System Reliability

Day/Date/Time: Wednesday, 22 Sep. 2021/14:00-15:00 hrs
Venue: Amphi Jardin

- **WE3B 330 14:00 hrs**
 RAM and Importance Measures Analysis of Offshore Drilling Rigs’ Cuttings Dryer
 Maria Valentina Clarivo Mesa, Joaquin Eduardo Figueroa Barraza, Luis Felipe Guarda Brauning, Carlos Henrique Bittencourt Morais, Danilo Colombo and Marcelo Ramos Martins

- **WE3B 378 14:20 hrs**
 Knowledge-Based System Modelling to Enhance Design for Reliability Process: An Application to LNG Industry
 Andrea Greco, Irene Gallici and Armin Narimanzadeh

- **WE3B 482 14:40 hrs**
 Bayesian Cross Entropy Method for Network Reliability Assessment
 Jianpeng Chan, Iason Papaioannou and Daniel Straub

Session [WE3C]—Maintenance Modeling and Applications

Day/Date/Time: Wednesday, 22 Sep. 2021/14:00-15:00 hrs
Venue: Espace Grand Angle 2

- **WE3C 480 14:00 hrs**
 Condition-Based Maintenance with Functional Modeling: Challenges and Opportunities
 Mengchu Song and Xinxin Zhang

- **WE3C 594 14:20 hrs**
 Energy Footprint of a Refractory Lining
 Roberta Piccinelli, Alessandra Caccamo and Stefano Moratti
<table>
<thead>
<tr>
<th>Session</th>
<th>Day/Date/Time</th>
<th>Venue</th>
</tr>
</thead>
<tbody>
<tr>
<td>WE3C</td>
<td>14:40 hrs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A Planning Strategy for Maintenance Interventions Under Complex Systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pablo Viveros, Leonardo Miqueles, Rodrigo Mena, Enrico Zio, Christopher Nikulin and Oscar Aranda</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session</th>
<th>Day/Date/Time</th>
<th>Venue</th>
</tr>
</thead>
<tbody>
<tr>
<td>WE3D</td>
<td>14:00 hrs</td>
<td>Panoramique</td>
</tr>
<tr>
<td></td>
<td>Interval Uncertainty in Logistic Regression</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nicholas Gray and Scott Ferson</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session</th>
<th>Day/Date/Time</th>
<th>Venue</th>
</tr>
</thead>
<tbody>
<tr>
<td>WE3E</td>
<td>14:00 hrs</td>
<td>Amphi Jardin</td>
</tr>
<tr>
<td></td>
<td>Mind the Gap Between Automation and Meaningful Human Control, Through Standards</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stig O. Johnsen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session</th>
<th>Day/Date/Time</th>
<th>Venue</th>
</tr>
</thead>
<tbody>
<tr>
<td>WE3E</td>
<td>14:20 hrs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A Modeling Approach to Consider the Effects of Security Attacks on the Safety Assessment of Autonomous Vehicles – An AT-CARS Extension and Use Case</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Timo Frederik Horeis, Tobias Kain, Rhea C. Rinaldo and Aaron Blickle</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session</th>
<th>Day/Date/Time</th>
<th>Venue</th>
</tr>
</thead>
<tbody>
<tr>
<td>WE3E</td>
<td>14:40 hrs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Analyzing Influence of Robustness of Neural Networks on the Safety of Autonomous Vehicles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jin Zhang, J. Robert Taylor, Igor Kozin and Jingyue Li</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session</th>
<th>Day/Date/Time</th>
<th>Venue</th>
</tr>
</thead>
<tbody>
<tr>
<td>WE3F</td>
<td>14:00 hrs</td>
<td>Espace Grand Angle</td>
</tr>
<tr>
<td></td>
<td>Risks in the Operation of Gas Installations in Commercial and Residential Buildings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pavel Rusek and Dana Prochazkova</td>
<td></td>
</tr>
</tbody>
</table>
Perception Shift Between the Classical Physical and Modern Digital Notion of Critical Infrastructures of a State: Elements of Diagnosis Based on a Qualitative Study
Jean-Jaques Kohler, Emmanuel Fragniere and Enrico Vigano

Functional Impact Analysis for Complex Critical Infrastructure Systems
Dustin Witte, Sylvia Bach, Daniel Lichte, Frank Fiedrich and Kai-Dietrich Wolf

Environmental Monitoring in a Cuban Oil Storage Plant to Characterize the Hydrocarbons Pollution Exposure in the Fence-Line Community
David Javier Castro Rodríguez, Omar Gutiérrez Benítez, José Reinol Poma Rodríguez, Jelvys Bermúdez Acosta and Micaela Demichela

Physics-Based Accelerated RDT Testing for High Reliable Equipment
Caio Souto Maior, Eduardo José Novaes Menezes, Isis Diler Lins, João Matheus Santana, Márcio José das Chagas Moura, Rafael Valença Azevedo, Manoel Feliciano da Silva Jr and Marcus Vinicius de Campos Magalhães

A Bayesian Regularized Artificial Neural Network for the Estimation of the Ignition Probability in Accidents in Oil & Gas Plants
Francesco Di Maio, Oscar Scapinello, Enrico Zio, Salvatore Cincotta, Anna Crivellari, Luca Decarli and Laura La Rosa

Towards Safe and Efficient Operation of Autonomous Ships from a Land Based Center
Magnhild Kaarstad, Alf Ove Branseth, Espen Strange and Jon Bernhard Høstmark

Autonomous Ships: Challenges, Opportunities, and Trust, As Seen From the Perspective of Current and Future Navigators
Magnhild Kaarstad, Alf Ove Branseth, Jon Bernhard Høstmark and Espen Strange

Human-Automation Interaction for a Small Autonomous Urban Ferry: A Concept Sketch
Thomas Porathe
<table>
<thead>
<tr>
<th>Session</th>
<th>[WE3I]—Artificial intelligence for reliability assessment and maintenance decision-making</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day/Date/Time</td>
<td>Wednesday, 22 Sep. 2021/14:00–15:00 hrs</td>
</tr>
<tr>
<td>Venue</td>
<td>Giffard</td>
</tr>
</tbody>
</table>

WE3I 434 14:00 hrs
Big Data Analytics for Reputational Reliability Assessment Using Customer Review Data
Jean Meunier-Pion, Zhiguo Zeng and Jie Liu

WE3I 467 14:20 hrs
Efficient Deep Learning Scheme to Evaluate the Reliability of a Passive Safety System
Kyungho Jin, Hyeonmin Kim and Jinkyun Park

<table>
<thead>
<tr>
<th>Session</th>
<th>[WE3J]—Effectiveness, Management and Reliability of Natural Risks Reduction Measures and Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day/Date/Time</td>
<td>Wednesday, 22 Sep. 2021/14:00–15:00 hrs</td>
</tr>
<tr>
<td>Venue</td>
<td>Botanique 2</td>
</tr>
</tbody>
</table>

WE3J 134 14:00 hrs
On Communicating Cost-Effectiveness of Flood-Mitigation Schemes
Onno Bokhove

WE3J 151 14:20 hrs
Improvement of Proportional Conflict Redistribution Fusion Rules for Levee Characterization
Théo Dezert and Jean Dezert

WE3J 230 14:40 hrs
Prediction of Runoff Sediment Volume Using Stochastic Analysis of Debris Flows Peak Discharge
Toshyuki Horiguchi and Yoshikazu Ishikawa

<table>
<thead>
<tr>
<th>Session</th>
<th>[WE3K]—Autonomous Driving Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day/Date/Time</td>
<td>Wednesday, 22 Sep. 2021/14:00–15:00 hrs</td>
</tr>
<tr>
<td>Venue</td>
<td>Atrium 1</td>
</tr>
</tbody>
</table>

WE3K 410 14:00 hrs
Safe Interaction Between AVs and Vulnerable Road Users
Miltos Kyriakidou and Vinh N. Dang

WE3K 414 14:20 hrs
Rule-Based and Managed Safety: A Challenge for Railway Autonomous Driving Systems
Philippe Richard, Abderraouf Boussif and Christopher Paglia

WE3K 551 14:40 hrs
Comparing Rule-Based and Data-Based Approaches for Lane-Change Prediction
Khelfa Basm and Tondeux Antoine
Session [WE4A]—Risk Assessment

Day/Date/Time: Wednesday, 22 Sep. 2021 / 16:10–17:30 hrs

Venue: Auditorium

<table>
<thead>
<tr>
<th>WE4A</th>
<th>445</th>
<th>16:10 hrs</th>
<th>173</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Challenges in Risk Assessment for Underground Gas Storage Activities in Italy</td>
<td>Cosetta Mazzini and Romualdo Marrazzo</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WE4A</th>
<th>464</th>
<th>16:30 hrs</th>
<th>174</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Numerical Verification of DICE (Dynamic Integrated Consequence Evaluation) for Integrated Safety Assessment</td>
<td>Sejin Baek, Gyunyoung Heo, Taewon Kim and Jonghyun Kim</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WE4A</th>
<th>515</th>
<th>16:50 hrs</th>
<th>174</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Towards Risk-Based Autonomous Decision-making with Accident Dynamic Simulation</td>
<td>Renan G. Maidana, Tarannom Parhizkar, Christoph A. Thieme, Marilia A. Ramos, Ingrid B. Utne and Ali Mosleh</td>
</tr>
</tbody>
</table>

Session [WE4B]—Occupational Safety

Day/Date/Time: Wednesday, 22 Sep. 2021 / 16:10–17:30 hrs

Venue: Amphi Jardin

<table>
<thead>
<tr>
<th>WE4B</th>
<th>240</th>
<th>16:10 hrs</th>
<th>175</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Index Method for Risk Assessment Using Load Lifting (Crane) and People Lifting (MEWP) Equipment</td>
<td>Antonino Muratore, Giuseppe Giannelli, Vincenzo Nastasi, Giuseppe Sferruzza and Giovanni Grillone</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WE4B</th>
<th>243</th>
<th>16:30 hrs</th>
<th>175</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Critical Assessment of the Technical Standards and Regulations about the Energy Isolation and Unexpected Start-Up in Machineries</td>
<td>Marcello Braglia, Luciano Di Donato, Marco Frossolini, Roberto Gabbielli, Leonardo Marrazzini and Luca Padellini</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WE4B</th>
<th>261</th>
<th>16:50 hrs</th>
<th>176</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Localization Systems for Safety Applications in Industrial Scenarios</td>
<td>Luca Landi, Alice Buffi, Mirko Marracci, Alessandro Stecconi, Pasquale Di Leone, Fabio Bernardini and Luciano D’Innittato</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WE4B</th>
<th>305</th>
<th>17:10 hrs</th>
<th>176</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Risk Assessment of Pressure Equipment During Use Phase</td>
<td>Antonino Muratore, Giuseppe Giannelli, Vincenzo Nastasi, Giuseppe Sferruzza and Giovanni Grillone</td>
</tr>
<tr>
<td>Session</td>
<td>WE4C — Petri Nets in reliability, safety and maintenance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day/Date/Time</td>
<td>Wednesday, 22 Sep. 2021/16:10–17:30 hrs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venue</td>
<td>Espace Grand Angle 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WE4C 109 16:10 hrs

A Petri Net Methodology for Modeling the Resilience of Nuclear Power Plants

Rundong Yan, Sarah Dunnett, Silvia Tolo and John Andrews

WE4C 146 16:30 hrs

Dynamic Probabilistic Safety Assessment with Petri Nets

Thomas Dosda and Jean-Yves Brandelet

WE4C 163 16:50 hrs

A Modelling Framework for Dynamic Safety Assessment

Silvia Tolo, Rundong Yan, Sarah Dunnett and John Andrews

WE4C 699 17:10 hrs

RCM3 Methodology Applied to The Cooling System of Land Military Vehicle With the Application of Colored Petri Nets

Enio Pereira Chambel, Luis Andrade Ferreira and Paula Gonçalves

<table>
<thead>
<tr>
<th>Session</th>
<th>WE4D — Prognostics and System Health Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day/Date/Time</td>
<td>Wednesday, 22 Sep. 2021/16:10–17:30 hrs</td>
</tr>
<tr>
<td>Venue</td>
<td>Panoramique</td>
</tr>
</tbody>
</table>

WE4D 522 16:10 hrs

Neurosingular Machines: New Results

Aleksandr Kirillov, Sergei Kirillov, Jose Ignacio Aizpurua Urumue, Markel Penalba Retes, Natalia Kirillova and Michael Pecht

WE4D 524 16:30 hrs

Hierarchical Multi-class Classification for Fault Diagnosis

Pablo del Moral, Slawomir Nowaczak and Sepideh Pashami

WE4D 545 16:50 hrs

A Closed-Loop Prescriptive Maintenance Approach for an Usage Dependent Deteriorating Item – Application to a Critical Vehicle Component

Pedro D. Longhitano, Khouda Tahri, Christophe Bérenguer and Benjamin Echard

WE4D 560 17:10 hrs

Design and Development of an Electromechanical Actuator Test Bench for Validation of Health Monitoring Models

Pier Carlo Berri, Matteo D.L. Dalla Vedova and Paolo Maggiore
Technical Programme

WE4E — Autonomous system safety, risk, and security

<table>
<thead>
<tr>
<th>Session</th>
<th>WE4E — Autonomous system safety, risk, and security</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day/Date/Time</td>
<td>Wednesday, 22 Sep. 2021 / 16:10–17:30 hrs</td>
</tr>
<tr>
<td>Venue</td>
<td>Amphib Jardin</td>
</tr>
</tbody>
</table>
| WE4E 519 | Hybrid Modeling for the Assessment of Complex Autonomous Systems – A Safety and Security Case Study
Rhea C. Rinaldo, Timo F. Horeis and Tobias Kain |
| WE4E 592 | New Architecture for Determine the Safety- and Security Parameters Based on Standard for Autonomous Robotics
Oussmane Krini and Aymen Ouertani |
| WE4E 620 | The Use of Game Theory for Autonomous Systems Safety: An Overview
Marilia A. Ramos, Marcio C. Moura, Isis D. Lins and Francisco S. Ramos |
| WE4E 720 | Social Engineering Exploits in Automotive Software Security: Modeling Human-targeted Attacks with SAM
Matthias Bergler, Juha-Pekka Tolvanen, Markus Zoppelt and Ramin Tavakoli Kolagari |

WE4F — Civil Engineering

<table>
<thead>
<tr>
<th>Session</th>
<th>WE4F — Civil Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day/Date/Time</td>
<td>Wednesday, 22 Sep. 2021 / 16:10–17:30 hrs</td>
</tr>
<tr>
<td>Venue</td>
<td>Espace Grand Angle</td>
</tr>
</tbody>
</table>
| WE4F 289 | Vehicular Loads Hazard Mapping Through a Bayesian Network in the State of Mexico
Miguel Angel Mendoza-Lugo and Oswaldo Morales-Nápoles |
| WE4F 292 | Bayesian Networks for Estimating Hydrodynamic Forces on a Submerged Floating Tunnel
G.A. Torres-Alves, O. Morales-Nápoles and S.N. Jonkman |
| WE4F 302 | Characterization of Long-period Ship Wave Loading and Vessel Speed for Risk Assessment for Rock Groyne Designs via Extreme Value Analysis
Sergio Memar, Ostvaldo Morales Nápoles, Bas Hofland and Gregor Melling |
| WE4F 446 | Adverse Event Analysis in the Application of Drones Supporting Safety and Identification of Products in Warehouse Storage Operations
Agnieszka A. Tübis and Arkadiusz Zurek |
<table>
<thead>
<tr>
<th>Session</th>
<th>WE4G — Asset management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day/Date/Time</td>
<td>Wednesday, 22 Sep. 2021/16:10–17:30 hrs</td>
</tr>
<tr>
<td>Venue</td>
<td>Atrium 3</td>
</tr>
<tr>
<td>WE4G 345 16:10 hrs</td>
<td>Applying an Unsupervised Machine Learning Method for Defining Maintenance Significant Items Miguel Angelo de Carvalho Michalski, Arthur Henrique de Andrade Melani, Renan Favaro da Silva and Gilberto Francisco Martha de Souza</td>
</tr>
<tr>
<td>WE4G 444 16:30 hrs</td>
<td>The Ageing Challenge of Hazardous Installations in Italy: Accidents, Results of Inspections and Good Practices Romualdo Marrazzo and Fabrizio Vazzana</td>
</tr>
<tr>
<td>WE4G 613 16:50 hrs</td>
<td>Benchmarking and Compliance in the UK Offshore Decommissioning Hazardous Waste Stream Joe Ford, Sean Loughney, Eddie Blanco-Davis, Ara Shahrokh, June Calder, David Ogilvie and Erik MacEachern</td>
</tr>
<tr>
<td>WE4G 627 17:10 hrs</td>
<td>Analysis of Failure Rate and Time of Water Pipes Failure Removal Katarzyna Pietrucha-Urbanik and Barbara Chorzębska-Cieślak</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session</th>
<th>WE4H — Automotive Industry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day/Date/Time</td>
<td>Wednesday, 22 Sep. 2021/16:10–17:30 hrs</td>
</tr>
<tr>
<td>Venue</td>
<td>Cointreau</td>
</tr>
<tr>
<td>WE4H 112 16:10 hrs</td>
<td>Reliability Study of the Motor Controller of Pure Electric Vans Xiong Shu, Rundong Yan, Wenxian Yang and Kexiang Wei</td>
</tr>
<tr>
<td>WE4H 183 16:30 hrs</td>
<td>Reliability Engineering of Electric Vehicle Powertrains: Data Collection and Analysis Based on Products in the Usage Phase Lea Hannah Guenther, Tobias Scholz, Friedbert Pautzke, Heiko Fechtner, Benedikt Schmueling, Nora Scholte, Semih Severengiz, Marcin Hinz and Stefan Bracke</td>
</tr>
<tr>
<td>WE4H 190 16:50 hrs</td>
<td>Driving Factors for Driving Simulators: A Feasibility Study Martin R. Skogstad, Catharina Lindheim and Guðlaug B. Sætren</td>
</tr>
<tr>
<td>WE4H 250 17:10 hrs</td>
<td>Simulation of Parallel Layered Air Cooling Thermal Management System for Li-ion Batteries Pengbo Zhang, Haixia Mu, Shijie Wei, Xiaojian Yi and Yuhang Cui</td>
</tr>
</tbody>
</table>
Technical Programme

Session [WE4I]—Artificial Intelligence for Reliability Assessment and Maintenance

<table>
<thead>
<tr>
<th>Day/Date/Time</th>
<th>Venue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wednesday, 22 Sep. 2021/16:10–17:30 hrs</td>
<td>Giffard</td>
</tr>
</tbody>
</table>

- **WE4I 540 16:10 hrs**
 - Supplemeting Fault Trees Calculations with Neural Networks
 - Victor Balbot, Christos Gierekos and Gerasimos Theotokatos

- **WE4I 565 16:30 hrs**
 - Prioritization of Culvert Maintenance Combining Multi Criteria Decision Models and Data Mining Techniques
 - Francesca Marsili and Jörg Bödefeld

- **WE4I 600 16:50 hrs**
 - Deep Reinforcement Learning-Based Maintenance Decision-Making for a Steel Production Line
 - Waldomiro Ferreira Neto, Cristiano Cavalcante and Phuc Do

- **WE4I 763 17:10 hrs**
 - A Method Based on Gaussian Process Regression for Modelling Burn-in of Semiconductor Devices
 - Piero Baraldi, Stefano Medici, Ibrahim Ahmed, Enrico Zio and Horst Lewitschnig

Session [WE4J]—Effectiveness, Management and Reliability of Natural Risks Reduction Measures and Strategies

<table>
<thead>
<tr>
<th>Day/Date/Time</th>
<th>Venue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wednesday, 22 Sep. 2021/16:10–17:30 hrs</td>
<td>Botanique 2</td>
</tr>
</tbody>
</table>

- **WE4J 257 16:10 hrs**
 - Coupled Numerical Model CFD-DEM of Debris Flows Impact to Improve the Vulnerability Quantification of Structures
 - Rime Chehade, Bastien Chevalier, Fabian Dedecker and Pierre Breul

- **WE4J 275 16:30 hrs**
 - Performance of the Sediment Control Dams Built After the 1999 Debris-Flow Disaster in Vargas
 - Jose Luis Lopez

- **WE4J 640 16:50 hrs**
 - Optimizing Recovery Strategies for Interdependent Lifeline Systems Exposed to a Natural Hazard
 - Hugo Rosero-Velázquez and Daniel Straub

- **WE4J 670 17:10 hrs**
 - Integrating Imperfect Information in the Deterioration Modeling of Torrent Protection Measures for Maintenance and Reliability Assessment
 - Nour Chahrour, Jean-Marc Tacnet and Christophe Bérenguer
<table>
<thead>
<tr>
<th>Session</th>
<th>[WE4K]—Manufacturing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day/Date/Time</td>
<td>Wednesday, 22 Sep. 2021/16:10–17:30 hrs</td>
</tr>
<tr>
<td>Venue</td>
<td>Atrium 1</td>
</tr>
</tbody>
</table>

- **WE4K 287 16:10 hrs**
 - Causes of Failure of Experimental Molten Salt Research Device
 - Michal Cihlář, Dana Procházková, Pavel Zácha, Jan Prehradný, Václav Dostál, Martin Mareček and Jan Ulhíř

- **WE4K 403 16:30 hrs**
 - Working Situation Health Monitoring: Proposal of Method and Case Study
 - Romain Dupounnot, Eric Levrat, Ali Sadat and Pascal Lamy

- **WE4K 589 16:50 hrs**
 - Risk Assessment in the Manufacturing Work Environment: Towards a Customised Risk Assessment
 - Gabriele Baldissone, Micaela Demichela, Lorenzo Comberti and Chiara Levi

- **WE4K 609 17:10 hrs**
 - Image Based Wear Behaviour Analysis of Cutting Tools
 - Max Raderczyk, Tom Stürwold and Stefan Bracke

<table>
<thead>
<tr>
<th>Session</th>
<th>[TH1A]—Risk Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day/Date/Time</td>
<td>Thursday, 23 Sep. 2021/09:00–10:20 hrs</td>
</tr>
<tr>
<td>Venue</td>
<td>Auditorium</td>
</tr>
</tbody>
</table>

- **TH1A 517 09:00 hrs**
 - Web App to Support Hazard Identification of Oil Refineries
 - July Macedo, Diego Aichele, Márcio das Chagas Mouna and Isis Lins

- **TH1A 531 09:20 hrs**
 - Fault Tree Modeling of Human Error Dependency in PSA
 - Ji Suk Kim and Man Cheol Kim

- **TH1A 535 09:40 hrs**
 - Towards a Relational Model for Collaborative Safety and Security Risk Assessment Processes
 - Sadek Rayan Aktouche, Mohamed Salih, Abdelmadjid Bouabdallah and Walter Schön

- **TH1A 562 10:00 hrs**
 - A Predictive Model for Quantitative Assessment of Aviation Terror Incidents Based on Geo-Political Environment
 - Stanislav Bukhman, Mario P. Brito and Ming-Chien Sung
Technical Programme

Session [TH1B]—Mathematical Methods in Reliability and Safety

<table>
<thead>
<tr>
<th>Day/Date/Time</th>
<th>Venue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, 23 Sep. 2021/09:00–10:20 hrs</td>
<td>Amphitheater Jardin</td>
</tr>
</tbody>
</table>

TH1B 580 09:00 hrs
Continuous Models for Discrete Data of Residual Contamination
Kamila Hasilová and Gabriela Leflerová

TH1B 621 09:20 hrs
Design Verification by Small Sample Locati Experiments
Gerhard Neubauer

TH1B 648 09:40 hrs
Genetic Algorithm Approach with Network Configuration for Bi-Objective Network Optimization
Natsumi Takahashi, Shao-Chin Sung, Tomoaki Akiba and Tetsushi Yuge

TH1B 653 10:00 hrs
Drone Fleet Evaluation by Structure Function Based Method
Elena Zaitseva, Patrik Ruotak, Miroslav Kvasnay, Vitaly Levashenko, Peter Sedlacek, Josef Kostolny, Niculae Brinzei, Maryam Ospanova and Marina Yelis

Session [TH1C]—Reliability and Maintenance of Networked Systems

<table>
<thead>
<tr>
<th>Day/Date/Time</th>
<th>Venue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, 23 Sep. 2021/09:00–10:20 hrs</td>
<td>Espace Grand Angle 2</td>
</tr>
</tbody>
</table>

TH1C 095 09:00 hrs
Online Estimation of Resource Overload Risk in 5G Multi-Tenancy Network
Yasameen Shihab Hamad, Bin Han and Osman Nuri Ucan

TH1C 336 09:20 hrs
A Hierarchical Predictive Maintenance Model for Networks
Zhenglin Liang and Yan-Fu Li

TH1C 436 09:40 hrs
Maintenace Optimization of Networked Infrastructures Considering the Component Distribution Uncertainty: A Deep Reinforcement Learning Approach
Wanshan Li and Chen Zhang

TH1C 583 10:00 hrs
Robust optimization for network restoration under demand uncertainty
Chuanzhou Jia and Yan-Fu Li
Technical Programme

Session [TH1D]—Land Transportation // Smart Cities and Systems
Day/Date/Time
Thursday, 23 Sep. 2021/09:00–10:20 hrs
Venue
Panoramique

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00</td>
<td>Accident Experience, Subjective Assessment of Risk and Behaviour Among Norwegian Cyclists</td>
<td>An-Magritt Kummeneje and Eirin Olaussen Ryeng</td>
</tr>
<tr>
<td>09:20</td>
<td>Finite State Machine Modelling for The Performance Analysis of An Integrated Road-Power Infrastructure with A Hybrid Fleet of EVs And ICVs</td>
<td>Lida Naseh Moghanlou, Seyed Mojtaba Hoseyni, Francesco Di Maio, Enrico Zio and</td>
</tr>
<tr>
<td>09:40</td>
<td>A Cascading Failure Model of Rail Transit Based on Application Cell</td>
<td>Kun Chen, Ning Huang and Xiangwei Wu</td>
</tr>
<tr>
<td>10:00</td>
<td>Data Oriented Optimization of Predictive Maintenance in Physical Networks : Application of Prioritization in Wastewater Network's Repairs</td>
<td>V. Couallier, C. Dumora, Cyril Leclerc and Jérémie Bigot</td>
</tr>
</tbody>
</table>

Session [TH1E]—Human Factors and Human Reliability
Day/Date/Time
Thursday, 23 Sep. 2021/09:00–10:20 hrs
Venue
Amphi Jardin

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00</td>
<td>Determination of Level of Automation for an Adequate Human Performance</td>
<td>Alaide Bayma and Marcelo Ramos Martins</td>
</tr>
<tr>
<td>09:20</td>
<td>Physiological Measurements for Real-Time Fatigue Monitoring in Train Drivers: Review of the State of the Art and Reframing the Problem</td>
<td>Bojana Bjegojevic, Maria Chiara Levi, Nora Balfe, Sam Cromie and Luca Longo</td>
</tr>
<tr>
<td>09:40</td>
<td>SAM-L2HRA: Human and Organizational Reliability Analysis Method for Analyzing Severe Accident Management Strategies and Actions</td>
<td>Jaewhan Kim, Young A Suh and Jinkyun Park</td>
</tr>
<tr>
<td>10:00</td>
<td>Investigation of a Domain-Specific Culture Shared by Operator Groups in Nuclear Power Plants</td>
<td>Seung Ki Shin, Jaehyun Cho and Jinkyun Park</td>
</tr>
</tbody>
</table>
Technical Programme

Session [TH1F] — Structural Reliability

Day/Date/Time: Thursday, 23 Sep. 2021 / 09:00–10:20 hrs
Venue: Espace Grand Angle

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH1F 376</td>
<td>Design and Homologation of Fiberglass Insulators for High Voltage Switches: An Overview of Italian Regulation and a Proposal for a New Approach to Determine Safety Coefficients</td>
<td>Pichini Maini E., Mazzarelli I., Meleddu A. and Ferino J.</td>
</tr>
<tr>
<td>TH1F 542</td>
<td>The Analytical Equivalent Drift Coefficient of EV-GDEE on Steady State for Several Nonlinear and Multi-dimensional Systems</td>
<td>Jianbing Chen and Tingting Sun</td>
</tr>
<tr>
<td>TH1F 683</td>
<td>Estimation of Sampled Domain Probability using Convex Hull Approximation</td>
<td>Gerasimov Aleksei and Miroslav Vorčekovskỳ</td>
</tr>
<tr>
<td>TH1F 696</td>
<td>Finite Element-Fidelity Parametrization of Kriging Metamodels for Structural Reliability Assessment</td>
<td>Ludovic Mell, Valentine Rey and Franck Schoefs</td>
</tr>
</tbody>
</table>

Session [TH1G] — Nuclear Industry

Day/Date/Time: Thursday, 23 Sep. 2021 / 09:00–10:20 hrs
Venue: Atrium 3

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH1G 496</td>
<td>Development of Containment Failure Probability and Uncertainty Analysis Program, COFUN-M</td>
<td>Byeongmun Ahn, Dohyun Lim, Youngho Jin and Moosung Jae</td>
</tr>
<tr>
<td>TH1G 507</td>
<td>Development of the Deep Learning Based Fast Simulation for Reducing the Uncertainty in Probabilistic Safety Assessment</td>
<td>Hyeonmin Kim, Seunghyoung Ryu and Jinkyun Park</td>
</tr>
<tr>
<td>TH1G 509</td>
<td>A New Generation of RAM Models to Incorporate Obsolescence Management Issues</td>
<td>Isabel Martín, Sebastián Martorell, Ana Sánchez and Sofia Carlos</td>
</tr>
<tr>
<td>TH1G 512</td>
<td>Application of Layerwise Relevance Propagation for Explaining AI Models in Nuclear Field</td>
<td>Seong Geun Kim and Jaehyun Cho</td>
</tr>
</tbody>
</table>
Session [TH1H]—Automotive Industry
Day/Date/Time: Thursday, 23 Sep. 2021 / 09:00–10:20 hrs
Venue: Cointreau

<table>
<thead>
<tr>
<th>Time</th>
<th>Paper Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00 hrs</td>
<td>Probabilistic Reliability Analysis of Screw Connections in Cast Aluminum Housings</td>
<td>Marco Arndt, Martin Dazer, Jens Rötting and Bernd Bertsche</td>
</tr>
<tr>
<td>09:20 hrs</td>
<td>Reliability Prediction of Electronic Devices for Combat Vehicles Based on Accelerated Testing</td>
<td>Xuan Phong Cu and Zdenek Vítr</td>
</tr>
<tr>
<td>09:40 hrs</td>
<td>Accelerated Reliability Testing of Combat Vehicles Electronic Parts Based on Multifactor Stress</td>
<td>Zdenek Vítr and Anh Dung Hoang</td>
</tr>
<tr>
<td>10:00 hrs</td>
<td>D-DEG: A Dynamic Cooperation-Based Approach for Reducing Resource Consumption in Autonomous Vehicles</td>
<td>Tobias Kain, Marcel Aguirre Mehlhorn, Hans Tempits and Jullian-Steffen Müller</td>
</tr>
</tbody>
</table>

Session [TH1I]—Security
Day/Date/Time: Thursday, 23 Sep. 2021 / 09:00–10:20 hrs
Venue: Giffard

<table>
<thead>
<tr>
<th>Time</th>
<th>Paper Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00 hrs</td>
<td>Expert Judgement in Security Analysis – the Pros and Cons of Analytical Wargaming</td>
<td>Stein Malerud and Håvard Fridheim</td>
</tr>
<tr>
<td>09:20 hrs</td>
<td>The Traffic Management Intrusion and Compliance System as Security Situation Assessment System at an Air Traffic Controller’s Working Position</td>
<td>Meilin Schaper, Olga Gluchshenko, Kathleen Muth, Lukas Tylburzy, Milan Rusk and Marián Trnka</td>
</tr>
<tr>
<td>09:40 hrs</td>
<td>Cyber Threats Affecting the Process Industry and Similar Sectors</td>
<td>Matteo Iaiani, Alessandro Tognetti and Valerio Cozzani</td>
</tr>
<tr>
<td>10:00 hrs</td>
<td>Risk Perception Biases to be Aware of in Terrorism Threat Assessments</td>
<td>Sissel Haugdal Jore</td>
</tr>
</tbody>
</table>
Resilience Engineering

<table>
<thead>
<tr>
<th>Session</th>
<th>[TH1J]—Resilience Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day/Date/Time</td>
<td>Thursday, 23 Sep. 2021/09:00–10:20 hrs</td>
</tr>
<tr>
<td>Venue</td>
<td>Botanique 2</td>
</tr>
</tbody>
</table>

TH1J 110 09:00 hrs
Study of the Resilience of Nuclear Power Plants in Response to Climate Change
Rundong Yan and Sarah Dunnett

TH1J 266 09:20 hrs
Towards a Novel Tiered Approach to Assess the Resilience Level in the Safety Domain
Elena Stefana, Carolina Strazzari, Filippo Marciano and Claudio Carnevale

TH1J 314 09:40 hrs
Formalization of Questionnaire-Based Score Card Risk Control and Resilience Assessment for Critical Infrastructure Operators and Companies Countering Covid-19
Ivo Haring, Lena Schaffner, Elena-Maria Restayn, Georg Vogelbacher, Alexander Stolz and Jörg Finger

TH1J 363 10:00 hrs
Framing Cyber Resilience for Critical Infrastructure in the Context of Resilience Engineering – A Literature Study
Solveig Pettersen and Tor Olav Grotan

Innovative Computing Technologies in Reliability and Safety

<table>
<thead>
<tr>
<th>Session</th>
<th>[TH1K]—Innovative Computing Technologies in Reliability and Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day/Date/Time</td>
<td>Thursday, 23 Sep. 2021/09:00–10:20 hrs</td>
</tr>
<tr>
<td>Venue</td>
<td>Atrium 1</td>
</tr>
</tbody>
</table>

TH1K 259 09:00 hrs
Tae Hoon Lee, Gunleiv Skofteland and Mary Ann Lundteigen

TH1K 419 09:20 hrs
A New Pivot-Based Approach to Constructing Prediction Limits and Shortest-Length or Equal Tails Confidence Intervals for Future Outcomes under Parametric Uncertainty
Nicholas A. Nechval, Gundars Berzins and Konstantin N. Nechval

TH1K 646 09:40 hrs
A Web Application To Predict State Of Charge Of Electric Vehicles Batteries
M. C. M. Dos Santos, J. D. Lins and M. C. Moura
<table>
<thead>
<tr>
<th>Session</th>
<th>[TH2A]—Risk Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day/Date/Time</td>
<td>Thursday, 23 Sep. 2021/10:35–11:35 hrs</td>
</tr>
<tr>
<td>Venue</td>
<td>Auditorium</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session</th>
<th>[TH2A]—Risk Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>[TH2A] 273</td>
<td>10:35 hrs</td>
</tr>
<tr>
<td>A Decision Support System for Multidimensional Risk Evaluation of Natural Gas Pipelines</td>
<td></td>
</tr>
<tr>
<td>Francisco Filipe Cunha Lima Viana, Marcelo Hazin Alencar, Rodrigo José Pires Ferreira and Adiel Teixeira De Almeida</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session</th>
<th>[TH2A]—Risk Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>[TH2A] 279</td>
<td>10:55 hrs</td>
</tr>
<tr>
<td>Risk Assessment in Magnetic Particle Inspection (MPI) of critical ferromagnetic parts via Bayesian Belief Networks and Analytic Hierarchy Process and the use of Goal Tree to Improve the on quality and Sustainability of Organizations</td>
<td></td>
</tr>
<tr>
<td>J. C. Pereira and F. Almeida</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session</th>
<th>[TH2A]—Risk Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>[TH2A] 285</td>
<td>11:15 hrs</td>
</tr>
<tr>
<td>Challenges for Continuous Risk Assessment in Agile Development Environments</td>
<td></td>
</tr>
<tr>
<td>Ralf Mock and Andreas Fischer</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session</th>
<th>[TH2B]—System Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day/Date/Time</td>
<td>Thursday, 23 Sep. 2021/10:35–11:35 hrs</td>
</tr>
<tr>
<td>Venue</td>
<td>Amphi Jardin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session</th>
<th>[TH2B]—System Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>[TH2B] 483</td>
<td>10:35 hrs</td>
</tr>
<tr>
<td>Development of a Cause-Effect Relationship Model to Identify Influences on Load Conditions that Cause Bearing Damage</td>
<td></td>
</tr>
<tr>
<td>Carolin Sturm, Thomas Gwosch, Sebastian Zimprich and Sven Matthiesen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session</th>
<th>[TH2B]—System Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>[TH2B] 694</td>
<td>10:55 hrs</td>
</tr>
<tr>
<td>Reliability Assessment of Pressurized Pipelines Based on Corrosion Rates and Defect Dependencies</td>
<td></td>
</tr>
<tr>
<td>Hicham Boufkhed, Radouane Laggoune and Emilio Bastidas arteaga</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session</th>
<th>[TH2C]—Reliability and Maintenance of Networked Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day/Date/Time</td>
<td>Thursday, 23 Sep. 2021/10:35–11:35 hrs</td>
</tr>
<tr>
<td>Venue</td>
<td>Espace Grand Angle 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session</th>
<th>[TH2C]—Reliability and Maintenance of Networked Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>[TH2C] 641</td>
<td>10:35 hrs</td>
</tr>
<tr>
<td>Robust End-To-End Reliability Evaluation for Industrial 5G Communication Systems</td>
<td></td>
</tr>
<tr>
<td>Mu-Xia Sun and Yan-Fu Li</td>
<td></td>
</tr>
</tbody>
</table>
Technical Programme

Session [TH2C]—Prognostics and System Health Management
Day/Date/Time Thursday, 23 Sep. 2021/10:35–11:35 hrs
Venue Panoramique

TH2C 662 10:55 hrs
Spatio-Temporal Anomaly Detection for Large-Scale Dynamic Attributed Networks
Hui Wu and Yan-Fu Li

TH2C 765 11:15 hrs
A Set of System Reliability Metrics for Mobile Telecommunication Network
Yan-Fu Li and Chuanzhou Jia

Session [TH2D]—Prognostics and System Health Management
Day/Date/Time Thursday, 23 Sep. 2021/10:35–11:35 hrs
Venue Panoramique

TH2D 652 10:35 hrs
A ROC Based Model to Maximize Global Detection Power of a Group of Detectors
Pierre Beauseroy and Edith Grall-Maes

TH2D 663 10:55 hrs
Forecasting Components Failures Using Ant Colony Optimization for Predictive Maintenance
Reza Khoshkangini, Ankit Gupta, Durlabh Shahi, Mohsen Tajgardan and Abbas Orand

TH2D 673 11:15 hrs
Investigation of Features for Ball Bearings Remaining Useful Life Prediction
Fatemeh Hosseinpour, Enrico Zio and Mehdi Behzad

Session [TH2E]—Organizational Factors and Safety Culture
Day/Date/Time Thursday, 23 Sep. 2021/10:35–11:35 hrs
Venue Amphi Jardin

TH2E 429 10:35 hrs
Human Reliability Analysis as Pedagogical Tool
Alaide Bayma and Marcelo Ramos Martins

TH2E 469 10:55 hrs
Sources of Underreporting of Adverse Events in the Chain from Individual to Regulator: A Short Literature Review
Troud Kongverk, Stian Antonsen and Øyvind Dahl

TH2E 585 11:15 hrs
Safety Knowledge in the General Population in the School Age
Gabriele Baldissero, Micaela Demichela, Salvina Martí, Eleonora Pilone, Lorenzo Comberti and Maria Alejandra Restrepo Mejia
Technical Programme

Session [TH2F]—Critical Infrastructures

Day/Date/Time: Thursday, 23 Sep. 2021/10:35–11:35 hrs
Venue: Espace Grand Angle

<table>
<thead>
<tr>
<th>Session ID</th>
<th>Time</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH2F 343</td>
<td>10:35 hrs</td>
<td>Safeguarding the Long-Term Condition of Logistics Infrastructure Assets: An Analysis of Concession Contracts</td>
<td>Mónica López-Campos, Laura Tapia, Carlos Castro and Raúl Stegmaier</td>
</tr>
</tbody>
</table>

Session [TH2G]—Asset management

Day/Date/Time: Thursday, 23 Sep. 2021/10:35–11:35 hrs
Venue: Atrium 3

<table>
<thead>
<tr>
<th>Session ID</th>
<th>Time</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH2G 638</td>
<td>10:55 hrs</td>
<td>A Global Approach to Life Management of Pressure Equipment</td>
<td>Corrado Delle Site, Emanuele Artenio, Annalisa Pirone, Maria Rosaria Vallorotonda and Silvia Maria Ansaldi</td>
</tr>
<tr>
<td>TH2G 695</td>
<td>11:15 hrs</td>
<td>Mastering Smart Asset Management in Industry 4.0 Revolution</td>
<td>Remy Arbabu, Abdessamad Kobi and Georges Abdul-Nour</td>
</tr>
</tbody>
</table>

Session [TH2H]—Safety and Reliability of Intelligent Transportation Systems

Day/Date/Time: Thursday, 23 Sep. 2021/10:35–11:35 hrs
Venue: Cointreau

<table>
<thead>
<tr>
<th>Session ID</th>
<th>Time</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH2H 104</td>
<td>10:35 hrs</td>
<td>Parametric Finite Element Analysis on the Design of Railway Crossings for Increased Reliability</td>
<td>Ni-Ari Chepuath, Valler Luiz Jantara Junior and Magokintos Papadis</td>
</tr>
<tr>
<td>TH2H 199</td>
<td>10:55 hrs</td>
<td>Comparing Macroscopic First Order Models of Regulated and Unregulated Road Traffic Intersections</td>
<td>Brahima BA and Antoine Tondeux</td>
</tr>
</tbody>
</table>
Dynamic Agent-Based Transit System Disruption and Recovery Simulation Model
Steffen Blume, Michel-Alexandre Cardin and Giovanni Sansavini

Session [TH2I]—Mathematical Models in Maintenance
Day/Date/Time Thursday, 23 Sep. 2021/10:35–11:35 hrs
Venue Giffard

Problem of Maintenance Resource Sharing in Physical Asset Maintenance – Case Study
Sylwia Werbin’ska-Wojciechowska and Agnieszka Tubis

Session [TH2I]—Mathematical Models in Maintenance
Day/Date/Time Thursday, 23 Sep. 2021/10:35–11:35 hrs
Venue Giffard

Optimisation of Maintenance Policies for a System with Multiple Deteriorating Components
Jiaqi Yin, Shaomin Wu and Virginia Spiegler

Session [TH2I]—Mathematical Models in Maintenance
Day/Date/Time Thursday, 23 Sep. 2021/10:35–11:35 hrs
Venue Giffard

Multiple Deterioration Processes with Stochastic Arrival Intensity
Inma T. Castro and Lucía Bautista

Session [TH2I]—Mathematical Models in Maintenance
Day/Date/Time Thursday, 23 Sep. 2021/10:35–11:35 hrs
Venue Giffard

Testing a Novel Decision Support System to Identify the Most Suitable MCDA Method for Energy Systems Analysis
Marco Cinelli, Peter Burgherr, Miłosz Kadziński, Grzegorz Miebs and Roman Słowiński

Session [TH2J]—Energy
Day/Date/Time Thursday, 23 Sep. 2021/10:35–11:35 hrs
Venue Botanique 2

Improving the Reliability of the Critical Asset Maintenance Plan Using Entropy and MAUT Approaches: A Hydropower Plant Case Study
Carlos Alberto Murad, Marjorie Maria Bellinello, Alécio Julio Silva, Gilberto Francisco Martha de Souza, Adherbal Caminada Netto, Arthur Henrique de Andrade Melani and Miguel Ângelo de Carvalho Michalski

Session [TH2J]—Energy
Day/Date/Time Thursday, 23 Sep. 2021/10:35–11:35 hrs
Venue Botanique 2

Resilience of the European Natural Gas Network to Hybrid Threats
Peter Burgherr, Eleftherios Siskos, Matteo Spada, Peter Lustenberger and Arnold C. Dupuy

Session [TH2K]—Reliability and Availability Issues of the 5G Revolution
Day/Date/Time Thursday, 23 Sep. 2021/10:35–11:35 hrs
Venue Atrium 1

Complexity in 5G Network Applications and use cases
Kui Li, Bertrand Decoq, Anne Barros, Yiping Fang and Zhiguo Zeng

Session [TH2K]—Reliability and Availability Issues of the 5G Revolution
Day/Date/Time Thursday, 23 Sep. 2021/10:35–11:35 hrs
Venue Atrium 1
TH2K 322 10:55 hrs
Steady-State Availability Evaluation of Multi-Tenant Service Chains
L. De Simone, M. Di Mauro, R. Natella and F. Postiglione

TH2K 571 11:15 hrs
Availability of a Radio Channel: Application of the Neglected Failure Model
Christian Tanguy

Session [TH3A]—Risk Assessment
Day/Date/Time Thursday, 23 Sep. 2021/11:35–12:35 hrs
Venue Auditorium

TH3A 567 11:35 hrs
Understanding Wildfire Induced Risk on Interconnected Infrastructure Systems Using a Bow-Tie Model with Bayesian Network and Self Organizing Maps
Prasangsha Ganguly and Sayanti Mukherjee

TH3A 603 11:55 hrs
Real Time Assessment of Building Envelope Systems Subject to Hurricanes Through Kriging Metamodels
Bowei Li, Zhicheng Ouyang, Wei-Chu Chuang and Seymour M.J. Spence

TH3A 619 12:15 hrs
Exploring the Nexus Between Organizational Anticipation and Adaptation in Crisis Management
Alexander Cedergren and Henrik Hassel

Session [TH3B]—Risk Management
Day/Date/Time Thursday, 23 Sep. 2021/11:35–12:35 hrs
Venue Amphi Jardin

TH3B 548 11:35 hrs
Community Resilience: How to Measure Interactions Among Society and Authorities?
Sahar Elkady, Leire Labaka, Josune Hernantes and Marcos R S Borges

TH3B 569 11:55 hrs
Addressing Risks and Challenges for the Pilot Sites Installing the E-Land Solution
Connie Ensood and Bjørn Axel Gran

TH3B 677 12:15 hrs
Decision Making for the Prevention of Intentional Third-Party Damage: An Evolutionary Game Perspective
Xiangyan Gao, Yunlong Wang and Laibin Zhang
<table>
<thead>
<tr>
<th>Session</th>
<th>Technical Programme</th>
</tr>
</thead>
<tbody>
<tr>
<td>[TH3C]—Maintenance Modeling and Applications</td>
<td></td>
</tr>
<tr>
<td>Day/Date/Time</td>
<td>Thursday, 23 Sep. 2021/11:35–12:35 hrs</td>
</tr>
<tr>
<td>Venue</td>
<td>Espace Grand Angle 2</td>
</tr>
<tr>
<td>TH3C 644</td>
<td>11:35 hrs</td>
</tr>
<tr>
<td>Queuing Theory and Regression Approach for Maintenance Personnel Estimation: A Case Study of a Brazilian Power Distribution Company</td>
<td></td>
</tr>
<tr>
<td>Gabriel Alves da Costa Lima, Luis Augusto Nagasaki Costa, Alberto Magno Teodoro-Filho and Eduardo Otto-Filho</td>
<td></td>
</tr>
</tbody>
</table>

| TH3C 647 | 11:55 hrs |
| Quasi-Opportunistic Inspection of a Critical System |
| Philip Scarf, Cristiano Cavalcante, Rodrigo Lopes, Naif Alotaibi and André Luiz de Oliveira e Silva |

| TH3C 657 | 12:15 hrs |
| The Use Machine Learning Model to Predict Number of Interruptions in Power Distribution Systems |
| da Costa Lima, Gabriel Alves, Costa, Luis Augusto Nagasaki, Teodoro Filho, Alberto Magno and Otto Filho, Eduardo |

<table>
<thead>
<tr>
<th>Session</th>
<th>Technical Programme</th>
</tr>
</thead>
<tbody>
<tr>
<td>[TH3D]—Prognostics and System Health Management</td>
<td></td>
</tr>
<tr>
<td>Day/Date/Time</td>
<td>Thursday, 23 Sep. 2021/11:35–12:35 hrs</td>
</tr>
<tr>
<td>Venue</td>
<td>Panoramique</td>
</tr>
<tr>
<td>TH3D 681</td>
<td>11:35 hrs</td>
</tr>
<tr>
<td>Establishment of EHA Performance Degradation Model Based on PMSM and Its Active Fault Tolerant Control</td>
<td></td>
</tr>
<tr>
<td>Zhaozhou Xin, Shaoping Wang and Chao Zhang</td>
<td></td>
</tr>
</tbody>
</table>

| TH3D 688 | 11:55 hrs |
| Research On Performance Degradation Of Inverse Gaussian Process Based On BPNN Data Screening |
| Zhaozhou Xin, Shaoping Wang and Chao Zhang |

| TH3D 725 | 12:15 hrs |
| Status Set Sequential Pattern Mining Based on Improved-Apriori Algorithm |
| Houxiang Liu, Shenghan Zhou, Bang Chen, XinPeng Ji, Yue Zhang, Wenbing Chang, Yiyong Xiao and Xing Fan |

<table>
<thead>
<tr>
<th>Session</th>
<th>Technical Programme</th>
</tr>
</thead>
<tbody>
<tr>
<td>[TH3E]—Organizational Factors and Safety Culture</td>
<td></td>
</tr>
<tr>
<td>Day/Date/Time</td>
<td>Thursday, 23 Sep. 2021/11:35–12:35 hrs</td>
</tr>
<tr>
<td>Venue</td>
<td>Amphi Jardin</td>
</tr>
<tr>
<td>TH3E 612</td>
<td>11:35 hrs</td>
</tr>
<tr>
<td>Learning From Accidents and Incidents – Underlying Rationalities</td>
<td></td>
</tr>
<tr>
<td>Marja Ylonen and Nadezda Gotcheva</td>
<td></td>
</tr>
</tbody>
</table>

<p>| TH3E 617 | 11:55 hrs |
| Public Procurement of Critical Services – Effects of Service Transfer on Organizational Reliability |
| Tone Slotsvik, Kenneth Pettersen Gould and Lillian Katarina Stene |</p>
<table>
<thead>
<tr>
<th>Session</th>
<th>[TH3E]—Critical Infrastructures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day/Date/Time</td>
<td>Thursday, 23 Sep. 2021/11:35–12:35 hrs</td>
</tr>
<tr>
<td>Venue</td>
<td>Espace Grand Angle</td>
</tr>
</tbody>
</table>

Teaching of Safety Engineering during the COVID-19 Pandemic
Zdenek Tuma, Lubos Kotek, Kamal Saberj, Jiri Kroup, Zdenek Krovír, Petr Blecha and Frantisek Bradec

<table>
<thead>
<tr>
<th>Session</th>
<th>[TH3F]—Mechanical and Structural Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day/Date/Time</td>
<td>Thursday, 23 Sep. 2021/11:35–12:35 hrs</td>
</tr>
<tr>
<td>Venue</td>
<td>Atrium 3</td>
</tr>
</tbody>
</table>

Analysis Over Detection of Areas Responsible for Failure to Crude Oil Transportation Line

<table>
<thead>
<tr>
<th>Session</th>
<th>[TH3G]—Safety and Reliability of Intelligent Transportation Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day/Date/Time</td>
<td>Thursday, 23 Sep. 2021/11:35–12:35 hrs</td>
</tr>
<tr>
<td>Venue</td>
<td>Cointreau</td>
</tr>
</tbody>
</table>

Degradation Assessment of Train Axle Bearing Based on A Deep Transfer Learning
Dingcheng Zhang, Di Cui, Mouna Hamadache and Edward Stewart

<table>
<thead>
<tr>
<th>Session</th>
<th>[TH3H]—Safety and Reliability of Intelligent Transportation Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day/Date/Time</td>
<td>Thursday, 23 Sep. 2021/11:35–12:35 hrs</td>
</tr>
<tr>
<td>Venue</td>
<td>Cointreau</td>
</tr>
</tbody>
</table>

Degradation Assessment of Train Axle Bearing Based on A Deep Transfer Learning
Dingcheng Zhang, Di Cui, Mouna Hamadache and Edward Stewart

Certification of Deep Reinforcement Learning with Multiple Outputs Using Abstract Interpretation and Safety Critical Systems
Faouzi Adjed, Frederic Pelliccia, Mehdi Rezzoug and Lucas Schott
Technical Programme

Session [TH3H]—Cyber Physical Systems

Day/Date/Time

Thursday, 23 Sep. 2021/11:35–12:35 hrs

Venue

Giffard

<table>
<thead>
<tr>
<th>Session</th>
<th>Date</th>
<th>Time</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH3H 743</td>
<td>12:15 hrs</td>
<td>Functional Safety of Railway Signaling Systems: Performance Requirements and Evaluation Methods</td>
<td>Aibo Zhang, Lei Jiang, Min Xie, Elias Kassa and Yilun Liu</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session</th>
<th>Date</th>
<th>Time</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH3I 173</td>
<td>11:35 hrs</td>
<td>Mobile Cyber Gateway Security Control</td>
<td>Jan Prochazka, Petr Novobilsky and Dana Prochazkova</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session</th>
<th>Date</th>
<th>Time</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH3I 457</td>
<td>11:55 hrs</td>
<td>Resilience Assessment Framework for Cyber-Physical Systems</td>
<td>Beatrice Cassottana and Giovanni Sansavini</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session</th>
<th>Date</th>
<th>Time</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH3I 651</td>
<td>12:15 hrs</td>
<td>Using Decision Trees to Select Effective Response Strategies in Industrial Control Systems</td>
<td>Sabarathinam Chockalingam</td>
<td></td>
</tr>
</tbody>
</table>

Session [TH3J]—Renewable Energy Industry

Day/Date/Time

Thursday, 23 Sep. 2021/11:35–12:35 hrs

Venue

Botanique 2

<table>
<thead>
<tr>
<th>Session</th>
<th>Date</th>
<th>Time</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Session</th>
<th>Date</th>
<th>Time</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH3J 368</td>
<td>11:55 hrs</td>
<td>A Short Review on Mathematical Algorithms for Predictive Maintenance Techniques and Anomaly Detection in PV Systems</td>
<td>Khaled Osmani, Mohamad Ramadan, Ahmad Haddad, Thierry Lemenand and Bruno Castanier</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session</th>
<th>Date</th>
<th>Time</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH3J 704</td>
<td>12:15 hrs</td>
<td>A Reliability, Durability and Safety Study of Alkaline and Polymer Electolyte Membrane Electrolyzers</td>
<td>Sara Soual, Florent Brisaud and Reda Lazrek</td>
<td></td>
</tr>
</tbody>
</table>

Session [TH3K]—Reliability and Availability Issues of the 5G Revolution

Day/Date/Time

Thursday, 23 Sep. 2021/11:35–12:35 hrs

Venue

Atrium 1

<table>
<thead>
<tr>
<th>Session</th>
<th>Date</th>
<th>Time</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH3K 573</td>
<td>11:35 hrs</td>
<td>Handover Rate in Cellular Networks With Anisotropic Random Waypoint Mobility Model: The Elliptic Case</td>
<td>Christian Tanguy</td>
<td></td>
</tr>
<tr>
<td>Session</td>
<td>Day/Date/Time</td>
<td>Venue</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>---------</td>
<td>---------------</td>
<td>-------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>TH3K</td>
<td>11:55 hrs</td>
<td></td>
<td>Reliability and Latency: A Joint Framework</td>
<td>Christian Tanguy</td>
</tr>
<tr>
<td>TH3K</td>
<td>12:15 hrs</td>
<td></td>
<td>A Fast Method to Compute the Reliability of a Connected (r,s)-out-of-(m,n) Lattice System</td>
<td>Jacek Malinowski</td>
</tr>
<tr>
<td>TH4A</td>
<td>14:00 hrs</td>
<td>Auditorium</td>
<td>Resilience of the European Natural Gas Network to Hybrid Threats</td>
<td>Peter B urghe r, Elef theri os Siskos, Matteo Spada, Peter Lustenberger, Arnold C. Dupuy</td>
</tr>
<tr>
<td>TH4A</td>
<td>14:20 hrs</td>
<td></td>
<td>A Multistate Bayesian Network Integrating MISOF and Probit Modelling for the Risk Assessment of Oil and Gas Plants</td>
<td>Francesco Di Maio, Oscar Scapinello, Enrico Zoo, Salvatore Cincotta, Anna C rivel lari, Luca Decarli and Laura La Rosa</td>
</tr>
<tr>
<td>TH4A</td>
<td>14:40 hrs</td>
<td></td>
<td>Risk Assessment of Fires in Residential Buildings – A Case Study in Norway</td>
<td>Bahareh Tajiani, Razieh Amiri and Jørn Vatn</td>
</tr>
<tr>
<td>TH4B</td>
<td>14:00 hrs</td>
<td>Amphi Jardin</td>
<td>An Analytical Variance Estimator for Separable Importance Sampling with Applications to Structural Reliability</td>
<td>G. Capasso, C. Goga, C. Bes, J. P. Navarro and M. Kempeneers</td>
</tr>
<tr>
<td>TH4B</td>
<td>14:20 hrs</td>
<td></td>
<td>Updating Structural FE Models of Cultural Heritage Assets Based on Probabilistic Tools</td>
<td>María L., Jalón, Juan, Chiáchío, Luisa Ma, Gil-Martín, Manuel, Chiáchío, Rubén, Rodríguez-Romero, Víctor, Compán-Cardiel and Enrique, Hernández-Montes</td>
</tr>
<tr>
<td>TH4B</td>
<td>14:40 hrs</td>
<td></td>
<td>A New Model of the Network Design Problem with Relays for Maritime Rescuing with Uncertainties</td>
<td>Yue Zhang, Yiyoung Xiao, Ranze Zhao, Rui Luo, Shenghan Zhou, Wenbing Chang, Bang Chen and Houxiang Liu</td>
</tr>
</tbody>
</table>
Technical Programme

TH4B 736 15:00 hrs
Importance Sampling and Sensitivity Analysis for Reliability Assessment of Hybrid Dynamic Systems Represented by Piecewise Deterministic Markov Processes
G. Chennetier, H. Chraibi, A. Dutfoy and J. Garnier

Session [TH4C]—Maintenance Modeling and Applications
Day/Date/Time Thursday, 23 Sep. 2021/14:00–15:20 hrs
Venue Espace Grand Angle 2

TH4C 676 14:00 hrs
Joint Selective Maintenance and Multiple Repairpersons Assignment Problem under Uncertainty
Mingang Yin, Longfei Yue, Tangfam Xiahou, Yiming Chen and Yu Liu

TH4C 685 14:20 hrs
Optimal Heuristics for Reliability-Based Inspection and Maintenance Planning
Daniel Straub and Elizabeth Bismut

TH4C 693 14:40 hrs
How to Use Prescriptive Maintenance to Construct Robust Master Production Schedules
David Lemoine and Bruno Castanier

TH4C 773 15:00 hrs
Improvement, Application and Verification of a New Multivariate Forecasting Model for Real Industry Related Issues
Abderrahim Krini and Josef Börcsökk

Session [TH4D]—Uncertainty Analysis
Day/Date/Time Thursday, 23 Sep. 2021/14:00–15:20 hrs
Venue Panoramique

TH4D 465 14:00 hrs
On the meaning of assurance
Andreas Hafver, Carla Ferreira, Christian Agrell, Dag McGeorge, Erik Andreas Hektor, Frank Børre Pedersen, Meine van der Meulen, Odd Ivar Haugen, Simen Eldevik and Tore Myhrvold

TH4D 616 14:20 hrs
Uncertainty in a Hurricane Vulnerability Model
Roberto Vicente Silva de Abreu, Jean-Paul Pinelli, Kurt Garley and Karthik Yarasuri

TH4D 630 14:40 hrs
Hierarchical Bayesian Inference for Quantification of Uncertainty in Multi Level Models of Dynamical Systems
Xinyu Jia and Costas Papadimitriu

TH4D 755 15:00 hrs
A Probabilistic Approach for the Consideration of Measurement Errors in Metrology
M. Gille, P. Beaurepaire, A. Dumas, N. Cayton and T. Yalamas
Session [TH4E]—Human Factors and Human Reliability

Day/Date/Time: Thursday, 23 Sep. 2021/14:00–15:20 hrs
Venue: Amphithéâtre Jardin

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:00</td>
<td>Examining the Effect of a Proposed Operator Support System on Human Error Probability Estimation</td>
<td>Awwal M. Arigi and Jonghyun Kim</td>
</tr>
<tr>
<td>14:20</td>
<td>Handling the Uncertainty with Confidence in Human Reliability Analysis</td>
<td>Caroline Morais, Scott Ferson, Raphael Mouna, Silvia Telo, Michael Beer and Edoardo Patelli</td>
</tr>
<tr>
<td>14:40</td>
<td>Analyzing the Validity of a Systematic Human-HAZOP Method for Human Error Identification in the Process Industries</td>
<td>Qianlin Wang, Su Hu, Feng Wang, Zhan Dou, Yichen Jiang and Guoan Yang</td>
</tr>
</tbody>
</table>

Session [TH4F]—Civil Engineering

Day/Date/Time: Thursday, 23 Sep. 2021/14:00–15:20 hrs
Venue: Espace Grand Angle

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:00</td>
<td>Probabilistic Design for Civil Engineering Infrastructure Using Vine-Copulas</td>
<td>Robert Lanzafame, Mike Timmermans, Felix Orlin, Susana Sellés Valls and Oswaldo Morales Nápoles</td>
</tr>
<tr>
<td>14:20</td>
<td>Surrogate-Assisted Versus Subset Simulation-Based Stochastic Comparison Between Running Safety and Passenger Comfort Design Criteria of High-Speed Railway Bridges</td>
<td>Reza Allahvirdizadeh, Andreas Andersson and Raid Karoumi</td>
</tr>
<tr>
<td>14:40</td>
<td>From a Microscopic Model to the Determination at the Structure Scale of the Reliability of an Alkali-silica Reaction Affected Dam</td>
<td>Guy-de-Patience Tubal Mbetmi, Frédéric Duprat, Thomas de Larrard and Stéphane Maiton</td>
</tr>
</tbody>
</table>
Nuclear Industry

Session [TH4G]—Nuclear Industry
Day/Date/Time Thursday, 23 Sep. 2021/14:00–15:20 hrs
Venue Atrium 3

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:00</td>
<td>Nonparametric Confidence Interval for Quantiles. A Comparison of Methods in the Context of Safety Analysis of NPPs</td>
<td>J.F. Villanueva, Ana Sánchez, Sebastián Martorell, Sofia Carlos, Isabel Martín, Rafael Mendizábal and Javier Ramón Camarreta</td>
</tr>
<tr>
<td>14:20</td>
<td>Characterizing Previously Unknown Dependencies in Probabilistic Risk Assessment Models of Nuclear Power Plants</td>
<td>John David Hanna</td>
</tr>
<tr>
<td>14:40</td>
<td>Modeling Infrared Spectra: An Algorithm for an Automatic and Simultaneous Analysis of NPPs</td>
<td>C. Butucea, J.-F. Delmas, A. Dutfoy and C. Hardy</td>
</tr>
</tbody>
</table>

Maritime and Offshore Technology

Session [TH4H]—Maritime and Offshore Technology
Day/Date/Time Thursday, 23 Sep. 2021/14:00–15:20 hrs
Venue Cointreau

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:00</td>
<td>Future Risk Scenarios regarding the use of the Northern Sea Route</td>
<td>Stig A. Johannessen and Ole Tobias Gudmestad</td>
</tr>
<tr>
<td>14:20</td>
<td>Availability Analysis of Marine Multistate Systems Using Ship Scrubber Systems</td>
<td>Thomas Markopoulo, Agapios N. Platis, Ioannis Dagkinis and George Chatziwelis</td>
</tr>
<tr>
<td>14:40</td>
<td>Application of Failure Mode, Effects and Criticality Analysis (FMECA) to Prioritize the Equipment and Components of the Subsea Christmas Tree System</td>
<td>Fernanda Marques de Moura, Marcelo Ramos Martins and Adriana Miralles Schleder</td>
</tr>
<tr>
<td>15:00</td>
<td>An Artificial Neural Network Based Decision Support System for Cargo Vessel Operations</td>
<td>Mei Ling Fam, Zhi Yung Tay and Dimitris Konvessis</td>
</tr>
</tbody>
</table>
Technical Programme

Session [TH4I] — Human factor in the smart industry

Day/Date/Time
Thursday, 23 Sep. 2021/14:00–15:20 hrs

Venue
Giffard

<table>
<thead>
<tr>
<th>Time</th>
<th>Presentation Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:00 hrs</td>
<td>Decision Making Approaches for Safety Purposes in Working Environments with Human-Technology Interaction</td>
<td>Silvia Carra, Luigi Monica and Giuseppe Vignali</td>
</tr>
<tr>
<td>14:20 hrs</td>
<td>Human – Collaborative Machine Interaction: The Effects on the Standardization</td>
<td>Sara Anastasi, Luigi Monica, Marianna Madomna and Mario Di Nardo</td>
</tr>
<tr>
<td>14:40 hrs</td>
<td>An Allostatic Load Measurement Model in Industrial Production Processes for Work-Related Stress Risk Assessment</td>
<td>Converso G., Murino T., Popolo V. and Toscano A.</td>
</tr>
<tr>
<td>15:00 hrs</td>
<td>Individual Situation Awareness to be set free from the Collaborative Robot</td>
<td>Nicole Berx, Arie Adriaensen, Wilim Decré and Liliane Pintelon</td>
</tr>
</tbody>
</table>

Session [TH4J] — Resilience Engineering

Day/Date/Time
Thursday, 23 Sep. 2021/14:00–15:20 hrs

Venue
Botanique 2

<table>
<thead>
<tr>
<th>Time</th>
<th>Presentation Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:00 hrs</td>
<td>An Innovative Approach for Ongoing Assessment of Critical Infrastructures' Resilience Based on a Nonfunctional Requirement Ecosystem</td>
<td>Weppe Alexandre, Bony-Dandrieux Aurélia, Tixier Jérôme, Chapurlat Vincent, Kamissoko Daouda and Daclin Nicolas</td>
</tr>
<tr>
<td>14:20 hrs</td>
<td>Investigating Resilience</td>
<td>Eric Rigaud</td>
</tr>
<tr>
<td>14:40 hrs</td>
<td>Insights About What Authorities and Emergency Services Need and Expect from Society</td>
<td>Leire Labaka, Sahar Elkady, Marcos R S Borges, Gala Linaciso and Josune Hernantes</td>
</tr>
<tr>
<td>15:00 hrs</td>
<td>A Comparative Analysis of Dynamic vs. Quasi-static Approaches for Resilience Assessment of a Bulk Power System Against Severe Wind Events</td>
<td>Farsiald Eghdami, Pierre Henneaux, Pierre-Étienne Labeau and Mathaios Panteli</td>
</tr>
</tbody>
</table>
Session [TH4K]—Software Reliability

<table>
<thead>
<tr>
<th>Day/Date/Time</th>
<th>Venue</th>
<th>Session Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:00 hrs</td>
<td></td>
<td>A Comparison of Different Approaches for Verification and Validation of Software in Safety-Critical Systems</td>
<td>Ludvig Björklund, Markus Glaser, Gunleiv Skofterland and Mary Ann Lundteigen</td>
<td>259</td>
</tr>
<tr>
<td>14:20 hrs</td>
<td></td>
<td>Locks for the use of IEC 61508 to ML Safety-Critical Applications and Possible Solutions</td>
<td>Albin Tarisse and François Massé</td>
<td>259</td>
</tr>
<tr>
<td>14:40 hrs</td>
<td></td>
<td>Review of Reliability Modelling Methods for Safety-critical Software in Nuclear Power Plant</td>
<td>Chao Guo, Shuqiao Zhou, Fan Chen and Xiaojin Huang</td>
<td>260</td>
</tr>
</tbody>
</table>
Model for Managing MOC Risks Through Artificial Intelligence

Marcelo Póvoas¹, José Cristiano Pereira², Davi da Fonseca Viera Junior Marinato¹ ² and Antonio de Paula Pedrosa¹ ³

¹Master in Engineering, Catholic University of Petrópolis, Brazil. E-mail: marcelo.povoas@gmail.com, davieno7@gmail.com, antonio.paula.pedrosa@outlook.com
²Doctor in Engineering, Catholic University of Petrópolis, Brazil. E-mail: josecristiano.pereira@ucp.br

This study proposes a method to be used in the strategic decision-making process, considering identifying and prioritizing the potential risks of Management of Change (MOC) in an industrial environment. The analytical hierarchy process (AHP) and the Bayesian Belief Networks (BBN) were used to assess the risks that could affect the regular operations, to generate data for an effective decision-making process, in addition, concepts of machine learning and artificial intelligence (AI) were introduced so that the analyzes can be done in a more automated way, generating reports that can assist in decision making. Limited work was found dealing with analysis to prioritize risks arising from MOC in any type of industry. As a result, a global risk matrix was proposed. The factors that most impact effectiveness of the process is Lack of Stakeholder involvement, Lack of risk assessment in the MOC process and Lack of knowledge of employees involved in the MOC process. Culminating 12 steps were created to implement a risk-free MOC process. The study provides a method to be used by professionals, engineers, and decision makers to identify risk factors that could affect companies’ operations.

Keywords: Machine learning, AHP, BBN, AI, MOC, Organizational factors, Probabilistic risk assessment.

Simulation Based Probabilistic Risk Assessment (SIMPRA): Risk Based Design

Seyed Hamed Nejad-Hosseinian¹, Taranom Parhi², and Ali Mosleh³

¹Center for Risk and Reliability, 0151 Glenn L. Martin Hall, University of Maryland, College Park, MD 20742, USA
²B. John Garrick Institute for the Risk Sciences, University of California, Los Angeles, 404 Westwood Plaza, Los Angeles, CA 90095, USA. E-mail: tparhizkar@ucla.edu, Mosleh@ucla.edu

The classical approach to design a system is based on a deterministic perspective where the assumption is that the system and its environment are fully predictable, and their behaviour is completely known to the designer. Although this approach may work fairly well for regular design problems, it is not satisfactory for the design of highly sensitive and complex systems where significant resources and even lives are at risk. In addition, it can result in extra costs of over-designing for the sake of safety and reliability.

In this paper, a risk-based design framework using Simulation Based Probabilistic Risk Assessment (SIMPRA) methodology is proposed. SIMPRA allows the designer to use the knowledge that can be expected to exist at the design stage to identify how deviations can occur; and then apply these high-level scenarios to a rich simulation model of the system to generate detailed scenarios and identify the probability and consequences of these scenarios. SIMPRA has three main modules including Simulator, Planner and Scheduler, and it approach is much more efficient in covering the large space of possible scenarios as compared with, for example, biased Monte Carlo simulations because of the Planner module which uses engineering knowledge to guide the simulation process.

The value-added of this approach is that it enables the designer to observe system behaviour under many different conditions. This process will lead to a risk-informed design in which the risk of negative consequences is either eliminated entirely or reduced to an acceptable range. For illustrative purposes, an earth observation satellite system example is introduced.

Keywords: Simulation based probabilistic risk assessment, Complex systems, Risk-based design, Dynamic risk assessment, Planner, Earth observation satellite, Scenario planning, Risk-informed design, Reliability.
Margins Assessment using Dynamic PSA
Jean-Yves Brandeleta, Thomas Dosdab and Cédric Lyardc
Framatome, Tour AREVA 1 place Jean Miller 92400 Courbevoie, France.
E-mail: ajean-yves.brandelet@framatome.com, bthomas.dosda@framatome.com, ccedric.lyard@framatome.com

The purpose of this communication is to present an innovative method to assess Initiating Event Frequencies usually evaluated with “static modeling” by Fault Trees.

Probabilistic Safety Assessment (PSA) models developed for nuclear industry consider a list as exhaustive as possible of Initiating Events (IE), for all reactor states. Initiating Events induced by the failure of a system used in normal operation are commonly modeled using Fault Trees.

From several years, Framatome is developing dynamic PSA based on Petri nets (see Dosda et al. 2021). Compared to “static modeling” by Fault Trees, the use of dynamic PSA allows more realistic modelling of plant behavior leading to reduce conservativism and more representative results. This could be of particular interest for slow degradation scenarios, for which it may be possible to take credit for repairs and grace periods.

In this context and for development perspectives, Framatome is experiencing a method for dynamic PSA model of the loss of Heating Ventilation and Air Conditioning (HVAC) Initiating Event. The use of dynamic PSA on this study case leads to a large reduction of the calculated Initiating Event frequency.

Reliability Assessment with a Compound Poisson Process-Based Shock Deterioration Model
Cao Wang
School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
E-mail: wangc@uow.edu.au

Existing structures may suffer from resistance deterioration due to repeated attacks. The modeling of resistance deterioration is a crucial ingredient in the reliability assessment and service life prediction of these degraded structures. In this paper, an explicit compound Poisson process-based model is developed to describe the shock deterioration of structural resistance, where the magnitude of each shock deterioration increment is modeled by a Gamma-distributed random variable. The moments (mean value and variance) and the distribution function of the cumulative shock deterioration are derived in a closed form. Subsequently, the overall resistance deterioration is modeled as the linear combination of the gradual and shock deteriorations. The proposed model can be used in the time-dependent reliability assessment of aging structures efficiently. A numerical example is presented to demonstrate the applicability of the proposed deterioration model by considering the time-dependent reliability of an aging bridge.

Keywords: Structural reliability, Resistance degradation, Compound Poisson process, Shock deterioration, Time-dependent reliability.
A Comprehensive Probabilistic Assessment Method of UAS Ground Collision Risk
Théo Serru and Kevin Delmas
1Laboratory ETIS, France and APSYS, France. E-mail: theo.serru@ensea.fr
2DTIS, ONERA, France. E-mail: kevin.delmas@onera.fr

Unmanned Aircraft Systems are widely experienced but using these systems for missions near to populated areas raises new safety challenges. To address these challenges, the European Aviation Safety Agency requires assessing, for a given operational profile, the likelihood of on-ground collision with critical infrastructure or people. Various works use Model Based Safety Assessment to identify the failure contributing to the crash, while some works provide probabilistic estimation methods of an on-ground collision. In these methods the assessment is performed thanks to Monte Carlo simulation known to be time-consuming to estimate the probability of rare events.

This paper will thus provide a comprehensive tool to estimate the on-ground collision probability and uses Importance Sampling method to tackle Monte Carlo limitations. Through a comparative study based on a drone use case, this paper provides a demonstration of the benefits of Importance Sampling over Monte Carlo method. Indeed, this method allows a reduction in the number of simulations and thus the time needed to compute probabilities, with a high confidence in the results. The experiments are based on a safety model formalized with the Open AltaRica platform on an ad-hoc simulator to perform both Monte Carlo and important sampling simulations.

Keywords: Dependability, Safety, Importance sampling, UAV, MBSA.

Bayesian Quantification Of CCF Alpha Factors Model Parameters
Julien Beaucourt and Dounia Abassi
Probabilistic safety analyses and accidental procedures department, Institute for radioprotection and nuclear safety, BP17 – 92262 Fontenay-aux-Roses Cedex, France. E-mail: julien.beaucourt@irsn.fr, dounia.abassi@irsn.fr

Common cause failure (CCF) are known to significantly contribute to the risk as shown by the probabilistic safety assessments (PSA). They have been taken into consideration since the early ages of PSA developments in the nuclear industry, as in other fields. Nevertheless, the modeling of CCF is also widely recognized to be a challenging part of PSA, especially when the systems’ failure is described through a fault tree (FT) structure. Among the most commonly used models for assessment of CCF parameters, the alpha factors model is generally considered to be one of the most relevant for the integration of operating experience feedback (OEF). This parametrization of the CCF is based on two sets of parameters: the total failure rate of each item of the CCF group (due to CCF and independent failures), and the α_k parameters, which are the fraction of the total failure rate associated to k components CCF in a group of size $m > k$.

The evaluation of these parameters based on operating experience is generally difficult for highly reliable systems such as the ones that are used in nuclear industry, the number of failures is generally very low, and is it is therefore difficult to rely on classical frequentist approaches. In this context, the Bayesian approach is generally recognized as a good alternative to the frequentist approach since it allows for introduction of exogenous data (such as expert judgment, generic data . . .) in the evaluation. Moreover uncertainties are naturally considered and evaluated in the Bayesian modeling. The difficulty is that analytical determination of the posterior distribution is generally not possible, except for the very specific case of conjugate prior and likelihood. In this paper, we present a Bayesian quantification of CCF parameters of alpha factors models.

The Bayesian computation is performed using the Stan software. The Stan software is a state-of-the-art tool for statistical modeling, especially Bayesian analysis, based on a Markov Chain Monte-Carlo (MCMC) algorithm for posterior sampling. As a first step, the posterior distribution is sampled from a conjugate prior/likelihood model (Dirichlet/multinomial), using controlled data. Then the alpha factors CCF model parameters are assessed in a two-stage (non-analytical) Bayesian model, using OEF data.

Keywords: Reliability, Common cause failure, Bayesian analysis.
In view of the operational characteristics of aviation troops under the condition of informationization, the concept of aviation equipment support system (SoS) of system and the conceptual models of aviation equipment support system of system are defined. The concept model of mission-based aviation equipment support system of system is established according to the logical main line of the “task-function-entity-relationship”. Task model, function model, entity model and relationship model of aviation equipment support system of system are constructed. Through four categories and seventeen views, the overall conceptual model is described in a more complete and detailed way. The research work in this paper can lay a foundation for the follow-up simulation, evaluation and decision-making of support system operation, and provide help for the aviation combat intelligence support and decision-making.

Keywords: Aviation equipment system of system, Support system of system, Conceptual model, Construction method.

Criticality-Based Predictive Maintenance Scheduling for Aircraft Components with a Limited Stock of Spare Components

Ingeborg de Pater, Maria del Mar Carillo Galera and Mihaela Mitici
Faculty of Aerospace Engineering, Delft University of Technology, The Netherlands.
E-mail: i.i.depater@tudelft.nl, M.A.Mitici@tudelft.nl

We propose a criticality-based scheduling model for aircraft component replacements. We schedule maintenance for a fleet of aircraft, each equipped with a multi-component system. The maintenance schedule takes into account a limited stock of spare components and the Remaining-Useful-Life prognostics for the components. We propose a component replacement scheduling model with three stages of maintenance criticality: i) critical aircraft that are not airworthy due to a lack of sufficient operational components, ii) predictive alerts for expected component failures, and iii) non-critical aircraft with some failed components. An Adaptive Large Neighborhood Search (ALNS) algorithm is developed to solve this criticality-based aircraft maintenance planning problem. The framework is illustrated for a fleet of aircraft, each equipped with a k-out-of-N system of components. A predictive maintenance planning is obtained within an outstanding computational time (less than 6 seconds for a fleet of 50 aircraft). Moreover, it is shown that the proposed planning with 3-levels of criticality ensures aircraft airworthiness while making cost-efficient use of maintenance slots.

Keywords: Predictive aircraft maintenance, Spare components management, Maintenance criticality.
How to Design Warranty Contracts Based on Customer Segmentation

Mohamed Jmel1, Bruno Castanier1,2 and Walid Ben Ahmed2

1University of Angers, LARIS, France.
E-mail: amohamed.jmel@etu.univ-angers.fr
2Bruno.Castanier@univ-angers.fr
2Markem-Imaje, France.
E-mail: wbenahmed@markem/imaje.com

Nowadays, the warranty contracts of a product are generally based on expertise and gut feelings, and not designed regarding the use of the products. Within this context, the aim of this paper is to develop a methodology to define customer-specific warranty contracts applicable in an industrial context. This methodology is developed from real data collected on industrial machines. We propose here to extend the work of Ye and Murthy (2016) to take into account the heterogeneity of customers profiles. A process of segmentation from the company’s existing database and based on data mining techniques will approach the heterogeneity of customers behavior and therefore the establishment of specific contracts.

Let us recall the existence of a large number of segmentation methods (Konstantinos Tsiptsis (2010)), each with its limitations and advantages. In our case, the proposed segmentation must ensure the best qualification of the various risks (client-supplier). A first analysis of the performance of several clustering methods will therefore be performed. Based on the results of this analysis, we will then propose the development of the methodology to define the various warranty strategies that we will apply on real data.

Keywords: Customer segmentation, Clustering, Warranty contracts, Contracts designing, Customers heterogeneity.
A Fast Fault Diagnosis Method for The Unlabeled Signal Based on Improved PSO-DBSCAN Algorithm
Shijie Wei, Huina Mu, Pengbo Zhang, Xiaojian Yi, and Yuhang Cui
School of Mechatronical Engineering, Beijing Institute of Technology, China.
E-mail: "a3220190156@bit.edu.cn," "bmuhuina@bit.edu.cn," "c3120190265@bit.edu.cn," "dyixiaojian@sina.cn," "e3120200184@bit.edu.cn"

The fault diagnosis of different components with supervised learning method usually requires a large number of training samples. In practical engineering applications, the diagnosis efficiency is low and the failure rate is high due to the small amount of training samples. In order to solve these problems, a step-by-step fast fault diagnosis method based on improved Particle Swarm Optimization (PSO)-Density Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm and Least Squares Support Vector Machine (LSSVM) is proposed. Firstly, the original signal is pre-processed by normalization and wavelet threshold de-noising. Then, the dimensionality reduction by Principal Component Analysis (PCA) is used as the input of the improved PSO-DBSCAN algorithm to cluster the data, and the train samples are formed after the data categories. Secondly, the train samples are used as the input of LSSVM to train the fault classifier. Finally, by using the trained classifier to classify other data, the working state of the component can be obtained.

Keywords: Fault diagnosis, Unlabeled signal, Wavelet threshold de-noising, Clustering algorithm, Improved PSO-DBSCAN algorithm, Least square support vector machines.
The Use of Driving Simulator for Training Learner Drivers Belonging to a High-Risk Group

Gunhild Birgitte Sætren¹, Jonas Rennemo Vaag² and Thor Owe Holmquist³

¹NORDLAB, Business School, Nord University, Norway.
²Faculty of nursing, Nord University, Norway.
³Road traffic section, Business School, Nord University, Norway.

Immigrant drivers are considered a high-risk group in traffic, especially drivers from Middle East, and Africa are represented more than other groups in road accident statistics. There are several factors why this group are at a higher risk. First of all, this group often consist of people with another cultural understanding of risk and road safety and a significant different driver training than the Norwegian driver culture and training. In addition, the language and a significant different driver training than the Norwegian national transport plan (NTP) as a group are familiar with. For this reason, the group is specified in gian driver culture and training. In addition, the language and a significant different driver training than the Norwegian national transport plan (NTP) as a group are familiar with. For this reason, the group is specified in the Norwegian national transport plan (NTP) as a group where research-based measures for increasing safety are in demand.

Thus, our research question was: Can driving simulator be a beneficial measure for safety for the high-risk group migration driver trainers? Method: Five interviews with driver instructors who used driving simulators to train migration driver trainers were conducted in addition to observations of teaching situations. Grounded theory was used for analysis. Results: The core category was “The simulator could increase safety training” This was based on the 2 main categories “The simulator is used like a car” and “Re-creating knowledge”. The conclusion was that simulator, in addition to real life training, could be a good tool for teaching immigrants to drive according to Norwegian standards.

Keywords: Road traffic safety, Driver training, High-risk road users, Simulator, Experiential learning, Simulation learning.

Studying Mental Stress Factor in Occupational Safety in the Context of the Smart Factory

Zohreh Zakeri¹, Abmet Omurtag²,³, Philip Broedon⁴, Greg Hilliard² and Azfar Khalid⁵

¹Department of Engineering, Nottingham Trent University, Clifton, Nottingham, UK, NG11 8NS.
²E-mail: zohreh.zakeri@ntu.ac.uk, ³Abmet.omurtag@ntu.ac.uk, ⁴Philip.broedon@ntu.ac.uk, ⁵Azfar.khalid@ntu.ac.uk

2Engineering Institution Group, PEPISCO International Ltd, 4 Leycroft Road, Leicester LE4 1ET.
E-mail: greg.hilliard@pepsico.com

The use of collaborative robots (cobots) in the industrial setting has grown and continues to grow globally, especially in the context of the smart factory. Humans and cobots are ever increasingly expected to share their workspace and associated issues related to workplace health and safety are expected to rise. This research study seeks to further understand the impact on the workers’ mental health, as measured by mental stress, in relation to the variables like task complexity, time constraints, production speed, collaboration duration etc. whilst working alongside the cobot. Non-invasive neuroimaging data acquisition and processing is used to find the correlations of mental stress with respect to variations in work environment conditions. Mental stress often correlates with the brain’s alpha rhythms and changes in haemoglobin concentrations and are observable effectively by a multimodal technique such as EEG+fNIRS. These patterns are responsible for increasing the information content of the measured signals and increase the accuracy of the decoding of mental states. The paper demonstrates the strategy for designing the experiments and the initial patterns acquired against the designed tasks.

Keywords: Mental stress measurement, Occupational safety, Human robot collaboration, Collaborative robotics, EEG and fNIRS, Neuroimaging.
to collect experiences and good practices from the operators/users of digital interfaces in Nordic power plants' control rooms. Ten units from four different power plants in Sweden and Finland participated in the project and data was collected through observations and interviews with main control room operators, training instructors, and staff involved in design and modernisation projects at the plants. The visits included dedicated times for crew observation in scenarios in the training simulators and visits to the main control rooms of the plants. In this summary paper we present an overview of the best practices that were identified in three main categories: "Alarms and warnings", "process displays", and "navigation, interaction and screen organisation". To our knowledge, this is the first effort to map the state of the art in Nordic plants regarding control room digitalisation and as such provides a unique overview of the operating experience with digital interfaces.

Keywords: Digitalization, Human System Interfaces (HSI), Control room, Nuclear safety, Human-machine interaction, Interaction design, Human factors.

Session: [MO1F]—Degradation analysis and modelling for predictive maintenance
Venue: Espace Grand Angle

MO1F: 174 10:25 hrs
Conditional Imperfect Maintenance of A Deterioration Process
Franck Corset1, Mitra Fouladirad2 and Christian Paroissin3
1Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK, 38000 Grenoble, France
E-mail: franck.corset@univ-grenoble-alpes.fr
2Institut Charles Delaunay-LAGS, IMRE 62IF, CNRS, Université de Technologie de Troyes, 12 rue Marie Curie, CS 45060, 10004 Troyes, France
E-mail: mitra.fouladirad@utt.fr
3Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, LMAP, UMR 5142, 64000 Pau, France
E-mail: christian.paroissin@utt.fr

We consider a gamma process for degradation modeling of a system, which is periodically inspected. At each inspection, a decision is taken in respect to the level of the degradation process. We consider the following maintenance framework:

(1) The system degradation indicator is more related to a service quality than a health indicator and the system failure is not considered in this paper;

(2) A perfect preventive maintenance is performed if the degradation level exceeds a fixed safety threshold L: the operation leads to a "as good as new" system;

(3) An imperfect preventive maintenance is performed if the degradation level is between L and a preventive threshold M: the imperfect action is modelling to an arithmetic reduction of degradation of order 1. In this later case, the improvement is proportional to the degradation level at the inspection time (with a reduction factor with);

(4) No action is performed if the degradation level is lower than M;

(5) The safety threshold exceeding is not self-announced and this event is detected only during an inspection;

(6) Maintenance actions do not induce a delay. Considering the cost of the inspections, of the perfect and imperfect preventive maintenance, we derive the closed form expression of the average long run cost of the maintenance policy in order to optimize the expected total cost between two CM (thanks to the renewal theory). A sensitivity analysis is performed and the robustness of the optimal parameters with respect to uncertainty.

Keywords: Imperfect Maintenance, Gamma Process, Maintenance Optimization, Degradation Process.

MO1F: 227 10:45 hrs
Filtering Noisy Gamma Degradation Process: Genz Transform Versus Gibbs Sampler
Xingheng Liu1 and Jørn Vatn2
1Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology Norway.
E-mail: xingheng.liu@ntnu.no, 2jorn.vatn@ntnu.no

Stochastic processes are widely used to describe continuous degradations, among which the monotonically increasing degradation is most common. However, in practice, the observed degradation path is often perturbed with undesired noise due to sensor or measurement errors. When the noise is Gaussian distributed with constant variance, different approaches such as Monte Carlo integral, Gibbs sampler, and Genz transform can be used to estimate model parameters.

In this paper, we show the limitations of Genz transform and the consequences of its inappropriate use. We also improve the Gibbs sampler by proposing an enhanced rejection sampling algorithm. In the presence of noise, the calculation of likelihood functions involves multivariate normal integrals. Genz transform converts the original integration domain into a unit hypercube. Compared to the Monte Carlo integral, Genz transform is more efficient since it avoids sampling from the domain outside the integration limits. However, suppose during a time interval, the hidden degradation growth is negligible compared to the noise. In
that case, we can prove that there is an accumulating error between the observed path and the sampled paths obtained using Genz transform, and the error cannot be eliminated once it appears. This results in an incorrect evaluation of the expected likelihood, biased estimates of model parameters, and erroneous prediction of the degradation growth.

Keywords: Degradation, Gamma process, Noise, Genz transform, Gibbs sampler, Likelihood.

A Hybrid Maintenance Policy for a Deteriorating Unit in the Presence of Random Effect and Measurement Error
Nicola Esposito1,2, Agostino Mele2, Bruno Castanier1,3, and Massimiliano Giorgio3
1Université d’Angers/Laris, Angers, France. E-mail: nicola.esposito@etu.univ-angers.fr
2Bruno.Castanier@univ-angers.fr
3Università degli studi della Campania “Luigi Vanvitelli”, Avellino. E-mail: agostino.mele@unicampania.it

In this paper, a hybrid condition/age-based maintenance policy is proposed for a deteriorating unit whose observed degradation path is affected by three forms of variability: time variability, unit to unit variability, and measurement error. The perturbed degradation process is modelled by using a gamma-based model with random effect. The unit is assumed to fail when its (hidden) degradation level exceeds a (fixed) given threshold. The failure is assumed to be not self-announcing. So, it is also assumed that a perturbed measurement does not allow to say with certainty whether a unit is failed or not.

The maintenance policy is defined by considering two different scenarios. In the first one, we assume that an optimal age-based replacement time and a single intermediate inspection time are initially planned and that based on the outcome of the inspection it is possible either to immediately replace the units or to postpone its replacement to a given (a priori defined) successive time. After each replacement, the unit is considered as good as new. However, being unable to detect failures, it is assumed that a perturbed measurement can occur either at inspection or at the a priori planned replacement time only. The second scenario extends the first one by assuming that a more expensive, not perturbed measurement can be optionally performed at inspection.

Finally, results obtained under the considered scenarios are analysed and compared in terms of long-run average cost rate, to evaluate whether (assumed that the option exists) it is convenient to perform the more costly inspection.

Keywords: Long-run cost rate, Condition-based maintenance, Gamma process, Measurement error, Random effect.

Risks of Power Plants with Small Modular Reactors
Dana Prochazkova1, Jan Prochazka2 and Václav Dostal3
1Department of Energy, Czech Technical University in Prague, Technika 4, 166 00 Praha 6, Czech Republic. E-mail: Dana.Prochazkova@fi.cvut.cz, Jan.Prochazka@fi.cvut.cz, 3Vaclav.Dostal@fi.cvut.cz

The power plants with small modular reactors (SMR) have been developing several tens of years. Their favorable position is in the first place small installed output. This plus is conditioned by high degree of inherent safety of this power plant. Due to low installed power, it is possible to reduce the emergency planning zone and generally reduce the licensing time due to the greater simplicity of the system towards the large nuclear sources. Since power plants with SMR contain hazardous substances and complex technology, their risks need to be managed in favor of integral safety. The paper shows the sources of their risks and the way in which the risks are managed in the SMR design with Energy Well reactor, which has been creating in the Czech Republic.

Keywords: Power plant with SMR, Risk sources, Integral safety, Terms of references, Risk-based design, Safety culture.

Increase of Safety of Steam Generator by Reconstructing the Water Supply Pipe
Karel Vidlak1 and Dana Prochazkova2
1Nuclear Power Plant, 373 01 Táborin, Czech Republic. E-mail: karel.vidlak@ces.cz
2Department of Energy, Czech Technical University in Prague, Technika 4, 166 00 Praha 6, Czech Republic. E-mail: Dana.Prochazkova@fi.cvut.cz
The safety of each nuclear power plant depends on the correct operation of the steam generator, which is conditioned by a high-quality supply of water supply. The steam generator is an important part of the technology that physically separates the media of the primary and secondary circuits. The temperature and pressure ratios in the steam generator are set in such a way that there is intensive steam development on the surface of the pipes, as well as the need to drive turbo generators. Therefore, the steam generator and the supply pipelines belong to the critical equipment of nuclear power plant. From this reason, they are a subject of risk-based inspection and the risk-based maintenance and, if necessary, remediation is carried out in a timely manner. The work shows the method of technical solution of an unsatisfactory heterogeneous weld connection to the supply water pipe in the nuclear power plant Temelin with reactor WWER 1000.

Keywords: Nuclear power plant, Steam generator, Supply water pipe, Risk-based inspection, Reconstruction.

Method of Extending the Operation of Steam-Generator on Nuclear Installation Under Conditions of Long-Term Station-Black-Out

Jan Jirousek¹ and Dana Prochazková²

1. State Office for Nuclear Safety, 373 05 Temelin, Czech Republic.
 E-mail: jan.jirousek@sujb.cz
2. Czech Technical University in Prague, Czech Republic.
 E-mail: danusa.prochazkova@fs.cvut.cz

The accident at the Fukushima nuclear power plant has demonstrated new challenges for the safety management of a nuclear power plants. The proposed measures aim is to avoid damage to the fuel cladding, which sooner or later will cause fission products to leak outside the nuclear power plant. The nuclear power plant steam generator is used at normal operation conditions to produce steam, which is used to drive the generator turbine. The article describes the long-term measures at accident associated with the loss of power supply from emergency diesel generators. It shows the way how the Feed & Bleed method will be used for removing the residual heat at the Temelin NPP in this case. This technique increases both, the robustness and the resilience, the operating time of the steam generator with coolant extends from 223 to 705, or up to 3500 hours.

Keywords: Nuclear power plant, WWER, Station black-out, Feed & Bleed, Blow-down, Steam generator, Austenitic steel.

Predictive Aircraft Maintenance: Modeling and Analysis Using Stochastic Petri Nets

Juseong Lee¹ and Mihaela Mitica²

 E-mail: ¹J.Lee-2@tudelft.nl,
2. M.A.Mitici@tudelft.nl

Predictive aircraft maintenance is a complex process, which requires the modeling of the stochastic degradation of aircraft systems, as well as the dynamic interactions between the stakeholders involved. In this paper, we show that the stochastically and dynamically colored Petri nets (SDCPNs) are able to formalize the predictive aircraft maintenance process. We model the aircraft maintenance stakeholders and their interactions using local SDCPNs. The degradation of the aircraft systems is also modeled using local SDCPNs where tokens change their colors according to a stochastic process. These SDCPN models are integrated into a unifying SDCPN model of the entire aircraft maintenance process. We illustrate our approach for the maintenance of multi-component systems with k-out-of-n redundancy. Using SDCPNs and Monte Carlo simulation, we analyze the number of maintenance tasks and potential degradation incidents that the system is expected to undergo when using a remaining useful life (RUL)-based predictive maintenance strategy. We compare the performance of this predictive maintenance strategy against other maintenance strategies that rely on fixed-interval inspection tasks to schedule component replacements. The results show that by conducting RUL-based predictive maintenance, the number of unscheduled maintenance tasks and degradation incidents is significantly reduced.

Keywords: Aircraft maintenance, Predictive maintenance, Stochastic Petri nets, Reliability, Modeling, Simulation.
Quality and Safety Performance in a Regional Airport: Comparing Passengers’ and Employees’ Perceptions with KPI
Luca D’Alonzo1,*, Maria Chiara Leva2, Edgardo Bucciarelli3, Donato Rapino3,4 and Sara Perinetti3,5
1Department of PPEQ Sciences, Section of Economics and Quantitative Methods, University of Chieti—Pescara, Italy.
E-mail: *luca.dalonzo@unich.it, edgardo.bucciarelli@unich.it
2Environmental Sustainability and Health Institute, Technological University Dublin, Ireland.
E-mail: mariachiara.leva@tudublin.ie
3Società Abruzzese Gestione Aeroporto (SAGA), Via Tiburtina Valeria – Aeroporto di Pescara, Pescara, Italy.
E-mail: cdonato.rapino@abruzzo-airport.it, dperinetti@abruzzo-airport.it

In this study, a passengers’ satisfaction questionnaire developed for a small regional airport in Italy was modified and adopted to ask employees’ perceptions for the quality and safety performance of the airport. Employees’ perceptions were elicited on topics aligned to those used in the customers satisfaction survey and the results were compared also considering quality and safety performance indicators as objective anchor point for the performance of the company. The findings indicate interesting areas of differences in the perceptions of the passengers and employees regarding company’s services and their performance, both useful in highlighting necessary areas of improvements. A passenger satisfaction model was developed using an ordinal logistic regression approach to verify whether perceptions related to airport performance for safety and security were deemed to be significant in respect to the overall passengers’ satisfaction. Notably for passengers comfort and information have a notable positive effect on their satisfaction while characteristics related to safety and security do not have a very considerable effect. Furthermore, the KPI used to check the safety performance of the airport highlighted possible deficiencies in the reporting and safety culture of the airport. The employees were also asked to suggest possible areas of improvement and the redistribution of the workforce for better matching between roles and responsibilities was among the chief aspect highlighted as critical areas of improvement.

Keywords: Airport service quality, Passengers’ satisfaction, Stepwise selection method, Passengers’ and employees’ perceptions, Quality and safety performance.

Research on Suitable Temperature and Humidity Technology Methods for UAV Storage Microenvironment
Kai Yan1, Xiao Gang Li3 and Qian Yu1
School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China.
E-mail: 1yan_kai@163.com, 3xylg@buaa.edu.cn, 1qyyyyyyy3126.com

In recent years, artificial intelligence, big data and machine learning have developed rapidly. As a new class of technology, UAVs (Unmanned Aerial Vehicles) are gradually applied to the military field for their low cost, easy operation, powerful all-weather and all-airspace reconnaissance and strike capabilities, long range and small size. With the mass production of military UAVs all over the world, the long-term storage of UAVs is facing new challenges. During the storage period of UAV, due to the different storage conditions, the failure modes of UAV systems are various. The root cause is most of the impact of the environment, so there are many environmental factors involved. Among them, temperature and humidity are important parameters of the UAV storage environment. Therefore, based on the UAV storage profile, this article analyzes the characteristics of the UAV storage microenvironment, and through the research on the importance of UAV storage environmental factors, determines the most important environmental factors that affect the UAV during the UAV storage process. On this basis, a technical method to determine the suitable temperature and humidity range of the UAV storage environment. This research provides a suitable storage environment for UAV products and improves the reliability and combat readiness of UAV products during storage.

Keywords: UAV, Storage reliability, Microenvironment, Storage environment, Temperature, Humidity.
Actors and Risk: Trade-offs Between Risk Governance and Securitization Theory

Cathrine Witnes Karlson, Claudia Morsut and Ole Andreas Hegland Engen
Department of Safety, Economics and Planning, University of Stavanger, Norway.
E-mail: cathrine.w.karlson@uis.no, claudia.morsut@uis.no, ole.a.engen@uis.no

Risk governance and securitization theory are generally thought to offer competing or even incompatible perspectives on risk. Correspondingly, assumptions concerning the actors involved in risk management differ. In risk governance, assumptions about the actor are primarily related to differing conceptions of rationality. In securitization theory, the assumptions relate more closely to the way in which social position and power relations shape the formation of meaning.

Despite these and other differences, this article argues that both theories are useful to researchers, practitioners, and policy makers as they expose different dynamics in issues of risk and security and provide alternative explanations of them. By comparing assumptions about actors’ behavior in the two theories the article describes a framework of trade-offs. Treating the differing actor assumptions as trade-offs can enrich empirical study, where risk policy, discourses, governance, and security processes are intertwined in complex relationships, and both rational actions and meaning formations are indispensable to understanding and coping with compound societal challenges.

Keywords: Risk, Securitization, Risk governance, Risk analysis, Actor theories, Agency.

Hybridization of Safety and Security for the Design and Validation of Autonomous Vehicles: Where Are We?

Martin Boyer, Théo Chelim and Jeremy Sobieraj
IRT SystemX, Palaiseau, France.
E-mail: martin.boyer@irt-systemx.fr, theo.chelim@irt-systemx.fr, jeremy.sobieraj@irt-systemx.fr

More and more ground transports are being used (vehicles, trucks, buses, taxis . . .) and they remain one of the most dangerous means of transport in the world. However, vehicles are increasingly connected and autonomous with the aim of making travel safer, cleaner and more efficient. They are now able to share and communicate information between themselves and their environment in real time, helping to reduce accidents, traffic congestion and greenhouse gas emissions. These vehicles are Cyber-Physical Systems (CPS), i.e. systems made up of mechanisms that capable of controlling physical entities. In order to guarantee the robustness of such systems, they must meet two main criteria: safety and security. However, safety and security are currently dealt with independently. The reasons for this are both historical and normative. One idea is therefore to combine these two criteria in order to obtain the most robust vehicle possible. In this article, we propose to highlight recent advances in the combined study of safety and security, focused on the autonomous vehicle. To do this, we have carried out a preliminary analysis of the existing situation and a cartographic study listing the articles dealing with this combination. Various qualitative and quantitative analyses of the existing situation are present in the literature, generally focused on CPS. Then, based on this study, we grouped the articles according to two categories: those highlighting the interests and possibilities of such a combination and those presenting hybrid methods in detail.

Keywords: Autonomous vehicles, Safety, Security, Cyber-physical systems, Validation, ITS.
A NaTech Vulnerability Indicator for Local Planners

Eleonora Pilone1, a, Micaela Demichela1, b and Gianfranco Camuncoli2

1 Department of applied Science and Technology, Politecnico di Torino, Italy.
E-mail: a eleonora.pilone@polito.it, b micaela.demichela@polito.it
2 ARIA s.r.l. – Analysis of Industrial and Environmental Risks, Italy.
E-mail: gianfranco.camuncoli@aria.it

The adaptation to climate change in terms of national legislative actions, compensation mechanisms, sectorial risk guidelines is slowly proceeding among EU member states; in this context, local land-use planners lack of adequate tools to properly face Climate-related events. In particular, as far as it concerns NaT risk, the effective implementation of dedicated measures at local level is difficult to reach; also, the methodologies elaborated till now rarely focused on the management of NaT risk from the point of view of local urban and land-use planners and managers. An easy-to-use NaT indicator is here proposed, aiming at providing Local administrations with a survey of the industries exposed to NaT risk on their territory, and to signal possible critical situations to be managed. The first step for the development of the indicator consists of a questionnaire aimed at identifying potential vulnerable items and hazardous substances detained; then, both items and substances are rated to obtain a classification of potential NaT vulnerability.

NaT indicator could be useful to increase the awareness and preparedness of public administrator and planners towards the increasing probability and impact of Na-Tech events, it has the advantage to be easy to use for not expert users and can guide the decision-makers in identifying the most vulnerable Na-tech areas in their territory. The NaT indicator can be integrated with further in-depth studies, including i.e. the Integrated Quantitative risk-assessment.

Propagating Local Measurements Along a Railway Network

Benoit Guyot1 and Lina El Houssei2

1 Saint-Denis, SNCF Réseau – Direction Générale Industrielle et Ingénierie, 6 Avenue François Mitterrand, France.
E-mail: benoit.guyot@reseau.sncf.fr
2 Neuilly-Plaisance, Risk’n’Tic, 15 Rue Pierre Brossolette, France.
E-mail: lina@riskntic.com

Optimising Track Maintenance is an important issue for railway Infrastructure Managers. This article presents an innovative modelling approach, which aims at predicting Track degradation indicators based on local measurements provided by WTMS. The proposed datadriven approach aims at supporting the continuous improvement of Track Maintenance planning processes, and to anticipate more efficiently the need for tamping operations. Tests have been performed based on real life data, gathered on SNCF Réseau network. Predicting results have been analysed, and have confirmed the relevance of the proposed modelling approach. Tests will be pursued in order to implement the approach on wider datasets and to identify potential interest concerning Rails Maintenance.

Keywords: Wheel/rail contact, Railway track degradation, Machine learning, Propagation, Axle loads.

MAINRAIL: Maintenance Optimization of Railway Infrastructure through Physical Modeling and Advanced Analytics

Unai Alvarado1, a, Pablo CáIzurri2, Albi San Emeterio1, b, Itxaro Errandonea1, c and Jorge Rodriguez2

1 CEIT-Basque Research and Technology Alliance (BRTA) and Universidad de Navarra, Tecnun, Donostia / San Sebastián, Spain.
E-mail: a unai.alvarado@ceit.es, b pcsiaurriz@ceit.es, c sanemeterio@ceit.es
2 MainRail Solutions, Mutriku, Spain.
E-mail: jorge.rodriguez@mainrailsolutions.com

Increasing the capacity of railway lines and managing maintenance activities with current practices are preventing the efficient use of the network.
Optimized and efficient management of railway infrastructure is essential for the development of railway services. For that purpose, new tools and strategies are needed to support decision making in the maintenance domain. In this paper, we explore how advances in digitization and commoditization of technologies, e.g., Internet of Things (IoT), Artificial Intelligence (AI) and Cloud Computing are enabling new approaches to optimize the management of railway infrastructure. We propose a new modular tool with enhanced analytics that supports decision-making and enables prescriptive maintenance. It combines physical modeling, formalization in the description of maintenance, and advanced analytics to leverage indicators. By presenting a use case that assesses the life cycle cost and remaining useful life of rails owed to wear, we argue that having Software tools that optimize the maintenance of railway infrastructure is key to support decision-making and enable prescriptive maintenance. A digital twin description of the infrastructure and the use of advanced analytics to generate high-level strategic indicators (e.g. safety, availability, costs and RUL Remaining Useful Life) is a feasible approach for the demands of such a Software tool.

Keywords: Railway infrastructure, Predictive maintenance, Maintenance optimization, CMMS, Asset management, Degradation physical modeling, Digital twins.

Behavioural Modelling of Signalling Constituents
First Author
MPJA Training & Advice, Former UIC System Rail Director, Dr. Marc ANTONI,
E-mail: marc.pierre.antoni@gmail.com

Behavioural modelling of signalling components is an indispensable tool for Railway Asset Management. Economic model can be based on these failure model for a subset of the infrastructure as signalling systems. The models are then applied with replacement unit costs in the framework of maintenance or renewal. Any model must consider age- ing phenomena to get as close as possible to reality. On this point, the method chosen has considered the data available. Behavioural modelling of signalling components, functions and other families of functions is proving to be an essential tool for the asset management of signalling installations. This is the major interest of this approach.

Keywords: Asset Management, Behavioural model, Cost model, LCC optimisation.
1970s. Since then, research has made considerable advances in the capabilities of analytical techniques applicable to safety critical systems. Technology has also advanced and system designs, their operation conditions and maintenance strategies are now significantly different to those of the 1970s.

This paper presents an overview of a new methodology developed, retaining the traditional ways of expressing system failure causality, which aims to develop the next generation of risk assessment methodologies. These evolved techniques, appropriate to meet the demands of modern industrial systems, aim to overcome some of the limitations of the current approaches. These new tools and techniques will seek to retain as much of the current methodology features as possible to reduce the learning curve for practitioners and increase the chances of acceptance.

The new approach aims to increase the scope of event tree/fault tree analysis through the incorporation of Petri net, Markov model, and binary decision diagram-based methodologies. Use of these techniques incorporates features such as: non-constant failure rates, dependencies between component failure events, and complex maintenance strategies to boost the capabilities of the methods.

In addition, it considers dedicated routines to analyse the accident risk of transport systems formulated as phased mission models. This type of modelling is demonstrated through the application to an aeronautical system, where the system is modelled as a mission consisting of a series of phases. Mission success requires the successful completion of each of the phases. This approach allows the requirements for success (and therefore failure) to differ from one phase to another. It is also possible to model scenarios whereby a system fault that occurs in one phase of a mission may not affect the system until a later phase of the mission.

Keywords: Risk assessment, Petri Net (PN), Binary Decision Diagram (BDD), Fault tree, Event tree, Phased mission model.

A New Model-based Risk Analysis Approach that Generate Cyberattacks Scenarios and Combine them with Safety Risks

Tamara Oueidat1, Jean-Marie Flaus1,2 and Francois Masse2

1G-SCOP laboratory, Grenoble Alpes University, France. E-mail: tamara.oueidat@grenoble-inp.fr
2INERIS, Direction des Risques Accidents, France. E-mail: francois.masse@ineris.fr

For many years, the introduction of connected systems and digital technology in critical industries worldwide makes them vulnerable to cyberattacks that can lead to undesirable safety accidents. Thus, analysing these attacks becomes an important matter during risk analysis. In most proposed risk analysis approaches applied in the industries, the safety subjects are taking into consideration without analysing the cyberattack that can lead to the same dangerous phenomenon as a safety incident, the safety and security subjects are treated separately, despite the common consequences and the interdependencies between them. Therefore, there is a strong interest in the development of risk analysis approaches combining safety and security, particularly in the process industry, which is a major potential hazard for local populations and the environment. In this article, a new model-based risk analysis approach is proposed, it presents a new way to generate the cyberattacks systematically based on the modelling system architecture and a list of generic vulnerabilities encountered on industrial systems. A likelihood evaluation for these attacks is presented with their combination with the safety risks.

Keywords: Safety, Cybersecurity, Cyberattack, Accidental situation, Undesirable event, Risk analysis.
prior distribution for Weibull distribution when the two parameters are unknown. The estimation of the posterior distribution or its moments requires, here again, approximations by iterative numerical methods. In addition, when data is heavily censored, those classical methods become ineffective in terms of bias and variance.

To address this, Bacha and al.2 have proposed the Bayesian restoration maximization (BRM) method. It is based on the restoration of missing data using Bayesian sampling of the parameters and an importance sampling technique.3 The proposal distribution is obtained from the maximization of the likelihood completed by the missing data. In this work, we first of all propose to improve the BRM method by amending the proposal distribution to make it more effective in terms of variance. In addition a new proposal distribution is obtained from the maximization of the mean of the posterior distribution completed by the missing data. The efficiency of the proposed methods was evaluated by a large number of simulations for different levels of censoring rate. Simulations have shown that the new proposed methods are effective both in terms of relative bias and relative root mean square error. Then, as a comparison, these methods were implemented on a real data set from the literature.

Keywords: Weibull competing risks, Masked causes, Heavy censored data, Bayesian sampling, Importance sampling.

MO2B: 090 11:50 hrs

Identifying Critical Failure-Propagation in Function Models of Complex Systems

Yann Guillouët1,2 and Frank Sill Torres2

Institute for the Protection of Maritime Infrastructures, German Aerospace Center (DLR), Germany.

E-mail: 1yann.guillouet@dlr.de, 2frank.silltorres@dlr.de

Complex interconnected systems have high demands on meaningful analysis of the impact of failures on the actual service provision. This includes the study of obvious and high probable events, but also failures that are difficult to anticipate, e.g. due to cascading effects or combined events. This work introduces a framework for failure analysis that enables the exhaustive identification of combined failures with the strongest impact on the functionality of a system. The framework consists of two principal elements: a method for capturing the propagation of failures in complex systems that are represented via function models, and algorithms for solving the identification problem, which is formulated as combinatorial optimization problem. The feasibility of the approach is verified at hand of a function model of an Offshore Wind Farm (OWF). Both algorithms are then applied to the model of an offshore wind farm in order to identify the failure combinations with the strongest impact on the functionality.

Keywords: Reliability engineering, Function modeling, Failure propagation, Combinatorial optimization, Fault tree analysis, Complex system, Combinatorial optimization.

MO2B: 093 12:10 hrs

Adaptive Learning for Reliability Analysis using Support Vector Machines

Nick Pepper1,2,3, Luis Crespo2 and Francesco Montomoli3

1QTech, Dept of Aeronautics, Imperial College London, UK.
E-mail: 1nick.m.pepper@imperial.ac.uk
2NASA Langley Research Center, Hampton, VA, 23681, USA

A novel algorithm is presented for adaptive learning of an unknown function that separates two regions of a domain. In the context of reliability analysis these two regions represent the failure domain, where a set of constraints or requirements are violated, and a safe domain where they are satisfied. The Limit State Function (LSF) separates these two regions. Evaluating the constraints for a given parameter point requires the evaluation of a computational model that may well be expensive. For this reason we wish to construct a meta-model that can estimate the LSF as accurately as possible, using only a limited amount of training data.

This work presents an adaptive strategy employing a Support Vector Machine (SVM) as a meta-model to provide a semi-algebraic approximation of the LSF. We describe an optimization process that is used to select informative parameter points to add to training data at each iteration to improve the accuracy of this approximation. A formulation is introduced for bounding the predictions of the meta-model, and a formulation for solving the identification problem, which is formulated as combinatorial optimization problem. The feasibility of the approach is verified at hand of a function model of an Offshore Wind Farm (OWF). Both algorithms are then applied to the model of an offshore wind farm in order to identify the failure combinations with the strongest impact on the functionality.
Modelling the Maintenance of Membranes in Reverse-Osmosis Desalination

Frits van Rooij, Philip Scarf and Phuc Do

1 Operational Technology Department, IDE Americas Inc., USA. E-mail: fritsvr@ide-tech.com
2 Cardiff Business School, Cardiff University, UK. E-mail: ScarfP@cardiff.ac.uk
3 CRAN, Lorraine University, France. E-mail: phuc.do@univ-lorraine.fr

Biofouling of membranes, amplified by recurring algal blooms, significantly reduces the efficiency of reverse-osmosis desalination. Degradation or wear of membranes caused by biofouling manifests as a loss in pressure, and maintenance is required otherwise membranes will fail. In this research, we model membrane wear and maintenance in a novel way, describing the hidden states through time of individual membrane elements in a reverse-osmosis pressure-vessel. Our mathematical model provides the basis for a simulation platform. We estimate parameters of the model using statistical methods, among them the particle filter. Maintenance planning is interesting because membrane elements can be replaced or swapped or cascaded or cleaned, and these differing interventions have different restorative effects. We demonstrate the potential for our model to support decision-making for maintenance planning and to reduce maintenance costs.

Keywords: Maintenance, Reliability, Wear, Cascading, Multi-component system, Desalination.

Accessibility Evaluation Method based on D-H Model and Comfort

Hongzhou Wu, Dong Zhou, Yuning Liang, Ziyue Guo and Yan Wang

1 School of Reliability and System Engineering, Beihang University, China. E-mail: 2056414268@qq.com, 3zhoudong@buaa.edu.cn, 770216228@qq.com, 4samsamsoo@163.com, 5wangyan@buaa.edu.cn
2 State Key Laboratory of Virtual Reality Technology and Systems, China
3 State Key Defense Science and Technology Laboratory on Reliability and Environmental Engineering, China

In virtual maintenance, the most widely used accessibility evaluation method is to use virtual human entity accessibility envelope surface to judge and evaluate. However, this method can only give two kinds of evaluation results: reachable and unreachable. There is not enough data and theoretical support for the construction of envelope surface, and the precision and accuracy of evaluation need to be improved. In this paper, a parameterized accessibility evaluation method and the construction method of accessibility envelope surface are proposed. Firstly, a 6-joint and 5-link Denavit-Hartenberg (D-H) link model is established from the waist to the fingertip of the human body, and the range of 10 degrees of freedom and angles of the 4 joints are determined according to ergonomics. Then, the reachable points are generated by Monte Carlo simulation. The accessibility envelope surface is composed of the outermost random reachable points. Then, comfort is introduced to refine the accessibility evaluation level, and a multi-level accessibility evaluation system based on comfort is constructed according to the rapid upper limb assessment (RULA). Finally, the comparison experiment with the reachable envelope provided by DELMIA in virtual environment and real environment shows that the proposed method has better evaluation accuracy and precision. Based on this method, an accessibility evaluation tool has been developed in CATIA and has been applied in some scientific research institutes.

Keywords: Virtual maintenance, Parameterization, Accessibility evaluation, Ergonomics, D-H model, RULA.
Condition-based Maintenance for Systems with Dependencies: Related Concepts, Challenges and Opportunities

Yixin Zhaoa and Yiliu Liub
Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, Norway.
E-mail: ayixinzhao@stud.ntnu.no, byiliu.liu@ntnu.no

Many critical systems with dependencies do not collapse immediately due to single-point failures but are more vulnerable to the cascading effects of these failures. Condition-based maintenance (CBM) has been found useful not only in improving availability of technical system but also in reducing the risks related to unexpected breakdowns, including those events related to dependencies, such as cascading failures. The serious disasters created by such failures and increased requirements for CBM policy due to dependencies urges a comprehensive study on current research and future challenges. In this study, a systematic literature review on the implementations of CBM in the systems with dependencies is conducted. Relevant papers are deliberately selected and analyzed in the VOSviewer program, to identify co-occurrences of keywords and so to illustrate basic concepts of CBM. Specifically, considering various types of dependencies, challenges, research advancements and research perspectives are identified. Opportunities of CBM for improving availability and reducing risks of dependent systems are finally explored.

Keywords: Condition-based Maintenance, Maintenance procedure, Dependent systems, Cascading failure, Risk analysis, Risk informed condition-based maintenance.

In the context of prognosis and health management (PHM) frameworks, deep learning (DL) algorithms have had a strong impact on the development of diagnosis and prognosis techniques. To this end, a common approach is to use monitoring data from engineering systems to find patterns that can help to assess the system’s state of health and predict its future behavior. Accurate diagnosis models based on operational conditions can serve as a tool to determine maintenance policies and logistic optimization. Further, a precise system’s diagnosis is important to have a baseline for prognosis tasks, such as the estimation of the system’s remaining useful life (RUL). The latter relies on accurate RUL labels, which are hard to acquire, especially when dealing with multi-component systems that present few failure instances. Hence, though these models are widely studied in academia, applying them to real complex systems is a challenging task, which hinders their applicability to real complex systems.

In this paper, we present a methodology to detect a system’s degradation states based on monitoring data and maintenance logs. The methodology comprises a data preprocessing stage to separate data from the system’s healthy state from possibly degraded or anomalous data. The objective is to obtain a clean dataset to train a deep learning autoencoder (AE). Once trained, the AE is tuned to reconstruct data from healthy states and thus can be used to detect anomalies and the system’s degraded states based on the reconstruction error. The proposed methodology is flexible and can easily be adapted to any system with many components. The methodology is validated with a case study corresponding to a vapor recovery unit (VRU) located at an offshore oil production platform. The system is composed
of multiple components where sensor data is collected for a one-year period every 15 seconds. Results show that by analyzing the behavior of the reconstruction error in time, the trained AE can accurately detect degradation on the system’s components based on their failure modes.

Keywords: Health state, Diagnostics, Degradation detection, Anomaly detection, Autoencoders, Deep learning.

Combination of Long Short-Term Memory and Particle Filtering for Future Uncertainty Characterization in Failure Prognostic

Ferhat Tamassaouet, Khanh T. P. Nguyen, Kamal Medjaher, and Marcos Orchard

1. Laboratoire Génie de Production, INP-ENIT, Université de Toulouse, France.
 E-mail: ferhat.tamassaouet@enit.fr, thia-phuong-khanh.nguyen@enit.fr, kamal.medjaher@enit.fr
2. University of Chile, Santiago, Metropolitan Region, 8370451, Chile.
 E-mail: marcos.orchard@u.uchile.cl

Failure prognostic is generally conducted following two approaches, model-based or data-driven. On the one hand, model-based approaches offer better physical interpretability and may be easily embedded in the structure of Bayesian processors for uncertainty characterization purposes. However, it is challenging to identify degradation models in complex systems, since it is required to understand all the underlying degradation phenomena. On the other hand, data-based approaches are more applicable for monitoring the health condition of complex systems. However, this latter approach suffers from a lack of interpretability and low uncertainty consideration. Nevertheless, these two characteristics are crucial for critical equipment in industries such as transport and energy production. In this paper, we propose a method combining long short-term memory (LSTM) and particle filter (PF), namely PF-LSTM, for handling uncertainty in the estimation and prediction of system states. In detail, a trained LSTM is used to propagate particles for prior system health state estimation. Then, using the Bayes formula, the weight of these particles is updated regarding the in-field measurements. Finally, when a fault is diagnosed, i.e., when the health indicator exceeds the fault threshold, LSTM is used to propagate the last health state posterior distribution to determine the system’s remaining useful life.

Keywords: Failure prognostic, Uncertainty management, Bayesian estimation, Particle filtering, Time-series forecasting, LSTM.

Remaining Useful Lifetime Prediction and Noisy Stochastic Deterioration Process Considering Sensor Degradation

Hassan Hachem, Hai Canh Vu, and Mitra Fouladirad

1. LIST3N Laboratoire Informatique et Société Numérique, Université de technologie de Troyes, France.
 E-mail: hassan.hachem@utt.fr, mitra.fouladirad@utt.fr
2. Laboratoire Recherche, FRE-UTC-CNRS-2012, Université de technologie de Compiègne, France.
 E-mail: hai-canh.vu@utc.fr

Condition monitoring is important to ensure system reliability and safety; it is the basis for prognostics (Remaining Useful Lifetime (RUL) prediction) and predictive maintenance. The monitoring data is usually erroneous due to sensor errors. In the literature, these errors are usually neglected or modeled by a Gaussian noise during the prediction of the RUL. However, in the reality, due to the varying operating environments and the ageing effect, the sensor itself will eventually undergo a deterioration and its performance will decrease over time. The use of the Gaussian noise with a constant mean does not permit to model the sensor degradation phenomenon and leads to inefficient forecasts of the RUL. For this reason, the paper focuses on analyzing the network of the sensors and their degradation in the RUL prediction process. To this end, we propose first an integrated degradation model that considers not only the system degradation but also the sensor degradation. In the proposed model, the sensor degradation is modeled by a Wiener process. Finally, to take advantage of the knowledge about the degradation model and the available data, Particle filter was adopted. The performance of the Particle filter is also analyzed by varying different estimation time of the proposed degradation model.

Keywords: Degradation modeling, Sensor degradation, Remaining useful lifetime estimation, Particle filter, gamma process, Wiener process.
MOE2: 184 11:30 hrs

The Effect of Imperfect Maintenance on a System's Condition considering Human Factors

Vida Kohestani Nejad, Robert Meissner, and Kai Wicke

Abstract

Human Factors (HF) have a significant impact on the maintenance quality and are recognized as a specific cause of Imperfect Maintenance (IM). Technician inexperience, poor procedure quality, or environmental factors are exemplary HF and can lead to insufficient repair or inspection. However, due to limited data, many studies describe HF only qualitatively as a possible cause of IM or highly simplify the effect of HF. This paper attempts to analyze the effect of HF on the system’s restoration level in order to provide a more realistic post-maintenance operating system condition. Furthermore, the economic savings potential of a fully automated condition-monitoring approach and the subsequent reduction of adversarial HF within the maintenance process will be analyzed. As an use case serves the tire pressure maintenance task of an Airbus A320. Based on fuzzy logic, an IM model is developed, considering the effect of HF individually on restoration and inspection tasks using human reliability assessments. The aircraft maintenance eco-system is simulated with a prescriptive maintenance model to enable the evaluation of monetary and non-monetary performance indicators. A comparative study revealed that perfect maintenance approaches tend to vastly underestimate the maintenance-related cost aspects. Moreover, the study showed that a technician’s lack of experience cannot be compensated by an improved working environment. Only the use of an automated monitoring system to replace error-prone inspection tasks resulted in an overall cost reduction. The developed model allows the individual evaluation of the technician’s expected performance to enable a more targeted deployment of the available workforce and to improve the effectiveness of maintenance.

Keywords

Human factors, Human reliability analysis, HEART.
A maintenance strategy for heterogeneous systems consists of degrading and non-degrading components are analyzed. A degrading component fails when its degradation level exceeds a failure threshold. Times between failures in the non-degrading components follow an exponential distribution. To prevent failures, degrading components state is periodically checked through inspections. In these inspection times, if the degradation level of a degrading component exceeds the preventive threshold, this component is replaced by a new one. When a component fails, repair team is immediately called and performs the replacement of the failed component by a new one after a fixed delay time. In fact, these maintenance times are seen as opportunities for preventive maintenance of the rest of degrading components. If the degradation level of a degrading component exceeds the preventive threshold at the time of another maintenance action, this component is predictively maintained. The expected cost rate of a degrading component exceeds the preventive threshold, Gamma degradation, Renewal theory.

Keywords: Condition-based maintenance, Opportunistic maintenance, Preventive threshold, Gamma degradation, Renewal theory.

The degradation of a mechanical system as a function of time or of the number of operations performed is often characterized by a timing value, that is the change of the time required to perform a certain operation. This timing value is in many practical cases determined as the difference between a start and an end time stamp, each of which is subject to measurement errors. In order to determine the future evolution of the system with the aim to predict the end of life, given by the first passage time of a critical value, a good estimation of the parameter of the underlying stochastic evolution and measurement error is required.

In this work an analysis is done using as basic model a Wiener process with measurement error. This is motivated by a practical case, where the timing of the opening or closing operation of a mechanical mechanism is used. The two time stamps are measured using two mechanical switches. Such electrical contacts are known to be subject to bouncing, which makes an accurate determination of the instance of time, when they close, difficult. A debouncing algorithm is used in this application: The time stamps are only recorded, if no change of signal is recorded over a certain time interval. As typical settling times are comparable to the changes of timings themselves, the error coming from this effect need to be modeled appropriately.

In a first approach the measurement effect is modeled as interval censoring. A more detailed model takes the random character of the bouncing into account as well. The underlying evolution of the timings is modeled as a Wiener process having both a drift and a variance. The model is similar to the one in Whitmore (1995), but without assuming a normal distributed measurement error.

Bayesian inference using MCMC is used to get the distribution of the different parameters. Due to its practical simplicity a comparison is made with the Whitmore
model, using the normal distributed case, showing when this method can be used instead.

With simulated data the performance of different approaches is confirmed and the algorithm is applied to some real data with an evaluation of the validity of the model assumptions with respect to the prediction of the failure time distribution. The analysis is a specific example how more complex measurement error models can be used together with a stochastic model of the degradation beyond the assumed normal distribution assumption.

Keywords: Degradation model, Wiener process, Mechanical bouncing, Interval censoring.

General Degradation Model with Measurement Errors
Hsueh-Fang Ai and Chien-Yu Peng
Institute of Statistical Science, Academia Sinica, Republic of China (Taiwan).
E-mail: ahsuehfang@stat.sinica.edu.tw, bchienyu@stat.sinica.edu.tw

Degradation analysis has become the most important technique and efficient method for developing statistical models of highly reliable products. If there are quality characteristics (QCs), whose degradation of physical characteristics over time (referred to degradation paths) is related to product reliability, an alternative option is the use of sufficient degradation data to accurately estimate the product’s lifetime distribution. When there are measurement errors in monotonic degradation paths, the assumption of the non-monotonic model can lead to contradictions between physical/chemical mechanisms and statistical/engineering explanations. To settle the contradiction, this study presents an independent increment degradation-based process that simultaneously considers the intra-unit variability, inter-unit variability, and measurement error in the degradation data. However, the likelihood function of the general degradation model includes high-dimensional integrals, and this results in lots of computing time to obtain the likelihood value of a set of parameters. In order to efficiently estimate the model parameters, we use a quasi-Monte Carlo approach, separate-variable method and parallel computing to overcome high dimensional integrals of the likelihood function. In addition, the study provides a model checking procedure to assess the validity of model assumptions. Some case studies are performed to demonstrate the flexibility and applicability of the proposed models. Especially, the analysis of LED data via proposed model is in agreement with the material theory and empirical experiments.

Keywords: Lévy process, Gamma process, Inverse Gaussian process, Wiener process, Random effects, Parallel computing.

Interpretability Improvement of Convolutional Neural Network for Reliable Nuclear Power Plant State Diagnosis
Ji Hyeon Shin and Seung Jun Lee
Department of Nuclear Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Republic of Korea.
E-mail: ajsf0428@unist.ac.kr

When an abnormal event occurs in a system in a nuclear power plant (NPP), it can cause severe safety problems if it is not mitigated. Therefore, an operator diagnoses the abnormality from alarms and monitoring parameters and conducts appropriate action. Among the tasks, diagnosis can increase the workload of the operator because it should be accurately performed as soon as possible to minimize the consequence of the occurred event. Recently, to support the diagnosis task, operator support systems using an artificial neural network (ANN) have developed. However, an ANN which is a black-box model cannot logically infer its prediction. For this reason, an operator cannot back up a misdiagnosis of the model, and they also cannot trust its diagnosis. For this issue, we intend to provide evidence with the diagnosis of the NPP abnormality classification model. To find more appropriate evidence of the NPP state diagnosis, this study verifies the improvement of interpretability when Guided Backpropagation is used with the explanation method. A convolutional neural network that can classify each NPP abnormal state with high accuracy is used as a diagnosis model, and the model calculates each classification contribution of plant parameters in input data using explanation methods. The interpretability of each method is compared by reclassifying the NPP states using each dataset composed of high relevant parameters from calculation results. By making the model more transparent, operators can trust model diagnosis.

Keywords: Nuclear power plant, Abnormal state diagnosis, Convolutional neural networks, Model interpretability.
High degree of safety, it is difficult to quickly apply automation. Human error, many operating automation methodologies are required. To reduce human errors in this situation, emergency operating procedures (EOPs) are used, which provide appropriate tasks to mitigate situations. However, human error is still a major contributor for nuclear power plant accident. In order to reduce this situation, emergency operating procedures (EOPs) are used, which provide appropriate tasks to mitigate situations and support diagnosing symptoms of nuclear power plants. However, human error is still a major contributor for nuclear power plant accident. In order to reduce human error, many operating automation methodologies are researched. However, in the nuclear field that requires a high degree of safety, it is difficult to quickly apply automation technology, so it is necessary to apply and verify low-level intelligent operator support systems. In this paper, we propose a concept of an intelligent operator support system replacing EOPs that have initial responses. The proposed operator support system has a parallel structure that monitoring tasks are conducted simultaneously in contrast with EOPs that are performed sequentially. From this monitored information, the system provides intuitive and accurate information to the operator through the state of critical safety functions and the master logic diagram. In addition, information on latent risks due to auxiliary system failure is also provided to the operator using multilevel flow modelling technique. This system is expected to replace initial response emergency operating procedure and to reduce responding time by the parallel structure.

Keywords: Operator support system, Emergency operating procedure, Operating automation, Multilevel flow modelling, Critical safety function, Emergency operation.

Resilience and Organizational Limits in the High-risk Nuclear Industry Context
Natalia Juhubt Krasnoprtevseva1,2, Catherine Thomas2 and Renata Kaminska1,3
1SKEMA Business School, Université Côte d’Azur (GREDEG), Sophia Antipolis, France. E-mail: natalia.krasnoprtevseva@skema-cotedazur.fr,
3renata.kaminska@skema.edu
2Université Côte d’Azur, CNRS, GREDEG, Sophia Antipolis, France. E-mail: catherine.thomas@univ-cotedazur.fr,

The ongoing COVID-19 crisis renewed scholarly interest in organizational resilience. To ensure resilience, organizations must develop the ability to proactively prepare for ambiguous and unexpected situations (Mond et al., 2020). From this perspective, resilience may be considered as a mindful process leading to reliability (Linnenluecke, 2017) where mindfulness allows to collectively manage stability/vividness tension and extend individual limits of attention (Weick & Sutcliffe, 2006, 2007).

A high level of environmental uncertainty increases the risk and may lead to violations of organizational limits (Faraj & Starbuck, 2007). In addition to the exogenous environmental limits, organizations are affected by the endogenous limits of cognition and managerial control, and also by the non-cognitive factors such as habits. However, many questions remain.

Following a recent call for further research on organizing for resilience (Linnenluecke, 2017, p. 26), the aims of our paper is to explore how the organizational limits restrain the development of mindfulness (foresight and cognition) and how organizations deal with those limits to develop the resilience?

We conducted a qualitative case study within a major European nuclear power plant. We wanted to better understand how in a highly controlled and regulated industry managers increase resilience by pushing of organizational limits. Our analysis shows that implemented practices constrained endogenous organizational limits instead of helping to extend them. Our paper highlights the role of mindfulness and attention in building resilience and tensions between managed and regulated safety. The obligation of result (e.g., reliable practice) is in tension with the obligation of means (e.g., procedure to follow). Moreover, our case study illustrates negative effect of organizational context on the extension of the organizational limits. In addition, we enrich the notion of endogenous limits by adding the non-cognitive dimension of habits of the nuclear energy industry. We believe that a better understanding of organizational limits to develop resilience may offer managers the opportunity to better consider the role of organizational context and to adapt training programs.
Comparison of Readiness to Perform the Task of Aircraft used for Cadet Training

Krzysztof Cür1, Mateusz Zieja2, Tomasz Czerwiński1,b and Justyna Tomaszewska1,c

1Military University of Aviation, ul. Dywizjonu 303 nr 35, Deblin, Poland.
E-mail: a k.cur@law.mil.pl, b t.czerwinski@law.mil.pl, c j.tomaszewska@law.mil.pl
E-mail: mariusz.zieja@itwl.pl

The main goal of this article is the comparison of readiness to perform the task of aircraft used for cadet training. During their education at the Polish Air Force University cadets use the following aircrafts: Cessna CA-150, Diamond DA-49, Orlik and Iskra. The guarantee of a timely and safety training is closely related to the readiness of the aircraft to perform the task and, consequently, its reliability. As a part of the research, data from the process of operation of the aircraft used in the Military University of Aviation were investigated. As the method of the analysis has been chosen semi-Markov model, which is one of the analytical methods based on the analysis of stochastic processes. It is based on the assumption that a technical object being in different operation states is a random variable. Semi-Markov model allows to determine the probability of aircraft being in one of the states of the operating conditions: waiting, daily-service, flight, hangar service. The results obtained differ in the initial phase depending on the assumed initial state. After about 30 days reach constant levels called limit probabilities.

Keywords: Readiness, Markov process, Probability, Aircraft, Aviation, Operating condition.

Power Flow Based Fault State Propagation Model and its Application to Aircraft Actuation System

Yajing Qiao1,a, Jian Shi1,2,3,b, Shaoping Wang1,2,3,c and Weiqi Liu1,d

1School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China.
E-mail: a qyjyyjy@buaa.edu.cn, b shijian@buaa.edu.cn, c shaopingwang@vip.sina.com
2Science and Technology on Aircraft Control Laboratory, Beihang University, Beijing 100191, China.
E-mail: b shijian@buaa.edu.cn, c shaopingwang@vip.sina.com
3Ningbo Institute of Technology, Beihang University, Ningbo 315800, China

In order to optimize the layout of sensor measuring points for accurate fault location, this paper establishes the power transfer model from the view of power flow existing in the complex electromechanical system and studies the power-transfer based fault state propagation process. Taking aircraft actuation system as an illustration, this paper analyzes the power flow transferring process from permanent magnet DC motor to piston pump and hydraulic cylinder. Based on the power transfer model, the fault state propagation process is then established and analyzed. The detectable condition and the attenuation law of fault detection sensitivity are found by the first-order trajectory sensitivity theory. The results indicate that as the distance between the measuring point of the sensor and the fault location becomes farther, the fault detection sensitivity attenuates. Therefore, it should be detected as close as possible to the fault location. The proposed method in this paper can describe the fault state propagation process of the system and verify the validity and accuracy of the theoretical analysis, which provide the basis for fault location and diagnosis based on power flow.

Keywords: Power flow, Fault state propagation, Sensor measuring point, Power dissipation, Sensitivity, Aircraft actuation system.

DROSERA: A Drone Simulation Environment for Risk Assessment

Nicolas Raballand1,a, Sylvain Bertrand1,b, Stéphanie Lala1,c and Baptiste Levassuer1,d

Université Paris-Saclay, ONERA, Traitement de l’Information et Systèmes, Palaiseau, France.
E-mail: a nicolas.raballand@onera.fr, b sylvain.bertrand@onera.fr, c stephanie.lala@onera.fr, d baptiste.levassuer@onera.fr

The use of Unmanned Aerial Vehicles (UAVs), or drones, appears to be a very effective means for aerial inspection of outdoor infrastructures over large areas and data collection.
For these missions to be authorized, drone operators must ensure that flight paths respect a given level of safety with regard to third parties such as population, transportation networks, critical infrastructures, etc. This paper presents a tool (DROSERA) for probabilistic risk assessment of fixed-wing UAV missions. It aims to calculate the probability of getting casualties for people at ground or accidents on transportation networks due to loss of control of an UAV. This tool integrates several models for such probability calculations, from the literature or developed by the authors. New models are presented here such as specific flight termination strategies for risk mitigation (terminal spiral), time of day sensitivity (people and traffic), effect of wind conditions. A synthesis of these models, their integration into the DROSERA tool, required inputs and calculated outputs are presented and illustrated on an example of UAV mission in a semi-urban scenario.

Keywords: Probabilistic risk assessment, Unmanned Aerial vehicles, Simulation framework.

Session [MO2I—Balanced System Reliability
Day/Date/Time Monday, 20 Sep. 2021/11:30–12:30 hrs
Venue Giffard

MO2I: 071 11:30 hrs
Component Assignment of Circular k-out-of-n: G
Balanced System with 2 Sectors Considering Component Degradation
Chenyang Ma1,2, Zhiqiang Cai1,2, Shubin Si1,2 and Qiyu Wang1,2
1Department of Industrial Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
2Ministry of Industry and Information Technology Key Laboratory of Industrial Engineering and Intelligent Manufacturing, Northwestern Polytechnical University, Xi’an 710072, China.
E-mail: caizhiqiang@nwpu.edu.cn

Balanced systems are widely used in the aerospace and military services featuring the symmetry structure with spatially distributed components, which increasingly becomes an important issue in the research field of the reliability theory. This paper studies a circular k-out-of-n: G balanced system with 2 sectors, which is operating if at least k components in each sector are working. In terms of the definition of a circular k-out-of-n: G balanced system with 2 sectors, we consider that if a component fails in one sector, the other unit of the same pair is forced down immediately to remain the symmetry of this sector. In addition, there is the same number of components in another sector to be shut down in order to keep balance among all sectors. First, based on the proposed system balance condition, the system reliability model is presented based on minimal path sets. Second, considering the gamma degradation process of components, the optimization model is established to find the optimal component assignment scheme and the assignment time for maximizing the lower boundary of the system reliability during the required mission time. Third, the delta-importance (DI) based heuristics are developed to solve the model. The analytical results and the numerical experiment illustrate the efficiency of models and the solving method, shedding light on making design and maintenance strategy of balanced systems.

Keywords: Balanced systems, Component assignment, Gamma degradation process, Minimal path sets, Importance measure.

MO2I: 372 11:50 hrs
Chen Fang1,2* and Lirong Cui1,2
1School of Management & Economics, Beijing Institute of Technology, Beijing, China
E-mail: *ivy.samanphal163.com, lirongcui@bit.edu.cn
2School of Economics & Management, Zhejiang Ocean University, Zhejiang, China

This paper considers a consecutive-k-out-of-n:F balanced system composed of m sectors and each sector is composed of n identical components with exponentially distributed lifetime. The lifetime distribution is subjected to a total load that is equally shared by all the working components in the same sector. The components fail due to internal failure or external shocks. If one component fails, one component in the remaining sectors should be forced down or one forced-down component in the same sector should be resumed to keep a balance. In this paper, the balance is achieved when the number of working components in each sector is same and the system fails if there are at least k failed and forced-down components in any sector. To enhance the balanced system survivability, mission abort policies are conducted if the failure risk becomes too high. Moreover, the mission reliability and system survivability are derived. Numerical studies are presented to confirm the obtained results.

Keywords: Balanced systems, Loading-sharing, Consecutive-k-out-of-n:F, Mission abort policies.
In this paper a pair of two rail-wheels which is submitted to degradation due to the unbalanced vibration and wear during long time running is studied. The pair of wheels works under the minimum allowable value of flange thickness and tread diameter. The thickness of flange and the diameter of wheel tread are dependent on each other by maintenance action, referred as reprofiling in this study. In order to keep the thickness of flange above a given value for the sake of safety, when the thickness of flange decreased, the diameter of the tread will be reduced by reprofiling (rotary cut) so as to increase the thickness of flange. The natural degradation of thickness of flange and the diameter are modelled by Wiener process. The dependence between two wheels is based on the wheel diameter difference. The inspection of the wheels is period and perfect. When the thickness of flange degrades under the given threshold, or when the diameter of anyone of the pair of the wheels degrades under the given threshold, the system is regarded as failed. When the difference of diameters between two rail-wheel pairs is greater than the tolerance or the thickness of the flange reduces over the preventive maintenance threshold, a preventive maintenance activity is planned. Hence the preventive maintenance threshold and the maintenance period are optimized by simulations.

Keywords: Wiener process, Symmetric system, Degradation, Maintenance, Tolerance, Rail-wheel.
This paper proposes a systematic approach to create digital twins of infrastructure for regional risk and resilience analysis. A digital twin consists of a virtual representation of infrastructure intended for specific analyses (e.g., in reliability and resilience analyses considering relevant hazards.) We formulate creating digital twins as a model selection problem whose objective is to ensure predicting the response quantities of interest (e.g., infrastructure performance or resilience measures) with the desired accuracy level under computational resource constraints. The virtual representation requires collecting and integrating data about infrastructure physical and operational characteristics from multiple sources. The required data depend on the considered analyses to predict the response quantities of interest (e.g., considering only reliability analysis or also including functionality analysis.) The collected data are typically unstructured and incomplete; so, they need to be processed and synthetically augmented to, for example, capture computational future developments. Creating digital twins also entails deciding the scales, boundaries, and resolution of the virtual representation and selecting models for intended analyses from multiple candidates, each of different computational fidelities and evaluation costs. A digital twin is hardly a perfect representation of infrastructure reality; there are missing or limited data about infrastructure, and several sources of uncertainty affect predicting infrastructure’s states for decades ahead. Uncertainty propagation is an integral part of creating digital twins to understand how missing data and different sources of uncertainty affect predicting the response quantities of interest. Uncertainty propagation requires evaluating the created digital twins at multiple realizations of the sources of uncertainty. However, using a detailed digital twin with high-resolution and high-fidelity models can lead to a high computational cost. The proposed approach guides the creation of statistically equivalent digital twins following two general principles: 1) the selected scale, resolution, and computational fidelities collectively ensure the desired accuracy in predicting the response quantities of interest, and 2) the allocation of computational resources is based on each contribution to the uncertainty of the response quantities of interest.

Keywords: Digital twin, Infrastructure, Model selection scale and resolution, Uncertainty propagation, Resilience.
Our first results using transfer learning show that deep survival models could benefit from training with multi-cancer datasets in the high-dimensional transcriptomic profiles.

Keywords: TCGA, Transcriptome, Survival analysis, Cox model, Deep learning, Transfer learning.

Session [MO3A]—Risk Assessment

Day/Date/Time: Monday, 20 Sep. 2021/16:10–17:30 hrs

Venue: Plenary Room

MO3A: 197
16:10 hrs

TRiceR, a Cloud-based Web Application for Supporting Risk-based Decisions Associated with Ice Falling from Wind Turbine Blades

Pascal Geerinck1,2, Tom Ghenne2 and Johan Cobbaert1,3

1Industrial Risk & Safety Management/Tractebel, Belgium.
2Onshore wind realization/Tractebel, Belgium.
3E-mail: tom.ghenne@tractebel.engie.com.

The development of wind energy projects situated in an industrial environment or close to cities is a preferred option in regions with high population densities, since it represents some major advantages. On the other hand, it also represents a drawback in terms of safety during winter conditions. Ice accretion on the wind turbine blades represents a major risk as ice fall may cause incidents, even lethal accidents to people in the vicinity. The current common methodology to identify the potentially risky areas around wind turbines uses a deterministic approach which leads to excessively large zones around the turbines without granularity or circumstantial sub-zones. The approach presented in this paper is a probabilistic risk-based Monte Carlo methodology associated with an acceptance framework. Developed by Tractebel, this methodology allows a much more detailed mapping of the risk zones and also enables to model the impact of mitigating measures. This represents a real risk-based decision tool for windfarm developers and operators. The approach is fully compliant with the IEA Wind ‘International recommendations for ice fall and ice throw risk assessments’ and recent international safety standards. The tool has been translated into a cloud-based application called TRiceR (Tractebel Ice Fall Risk Assessment Digital Application).

Keywords: Ice, Turbine, Risk assessment, Mitigating measures, Monte-Carlo simulations, TRiceR.
MO3A: 221 16:50 hrs

Risk Assessment of Non-Compliance with General Data Protection Law (LGPD): A Necessary Adjustment for Healthcare Companies That Use Chatbots For Automated Care
Antonio de Paula Pedrosa1,a, Jos\` e Cristiano Pereira2, Marcelo Povoas1,b, Davi da Fonseca Vieira Junior Marinato1,c, Matheus Bastos de Almeida Bastos1,d and Jose Lu\' is Corr\` ea da Costa2
1Master in Engineering, Catholic University of Petri\` opolis, Brazil. E-mail: \texttt{antonio.paula.pedrosa@outlook.com}, \texttt{marcelo.povoas@gmail.com}, \texttt{davieng07@gmail.com} and \texttt{matheusbastos.engenharia@gmail.com}, \texttt{jlccbr@gmail.com}
2Doctor in Engineering, Catholic University of Petri\` opolis, Brazil. E-mail: josecristiano.pereira@ucp.br

With the publication of the General Data Protection Law - (LGPD) many companies having their headquarters in Brazil need to work on adapting their processes. Most companies are seeking for compliance, however, many still do not know how to proceed. The risk of legal and financial issues related to non-compliance is high. This study reviews the current percentage of companies that use a Chatbot service and are compliant with the LGPD. It also reviews the steps to adjust the Chatbot service used by companies in the European Union to be compliant with the General Data Protection Regulation - (GDPR). As a methodological approach, a search in the state-of-the-art literature was conducted to identify the most recent published related content. A survey was conducted with several companies based in the Rio de Janeiro city which use a Chatbot service and are compliant with the LGPD. As a result, a flowchart showing the steps for adapting a Chatbot service to the LGPD is presented. The risks of non-compliance are also presented. This study addresses a gap observed in the literature since no specific previous work has been found covering this topic. Many companies may benefit from this study by knowing the steps to adapt their Chatbot service to the LGPD requirements, and avoid the risks associated to non-compliance.

Keywords: Chatbot, LGPD, GDPR, Privacy by design, Innovation.

MO3A: 269 17:10 hrs

QRA Analysis of Different Liquefied Natural Gas Supply Alternatives: A Case Study
Cristian Colombini1 Marco Pontiggia2 and Giovanni Uguccioni2
1RINA Consulting S.p.A., Oil & Gas HSE & Reliability Unit, Via Cecchi 6, 16129 Genoa, Italy. E-mail: cristian.colombini@rina.org
2RINA Consulting S.p.A., Oil & Gas HSE & Reliability Unit, Via Gran S. Bernardo Palazzo R, 20089 Rozzano, Italy

Nowadays, the number of infrastructures and facilities where natural gas is handled in liquefied form is constantly increasing. However, for most of the end users (e.g., power stations), LNG has to be vaporized, usually at high-pressure conditions, back to Natural Gas form. Therefore, in the risk analysis activities for plants involving natural gas both liquid and gaseous accidental Loss of Containment have to be accounted. As well consolidated risk analysis practice, Quantitative Risk Assessment (QRA) is largely used to support design phase of complex technical systems with potential for Major Accidents.

In cases where a small supply of natural gas is required, transportation of LNG can consider road transport, as an alternative to vaporization at harbor and transportation via pipeline. This work proposes the analysis of a case study related to supplying natural gas to an onshore located power station from the ship unloading of LNG occurring at a near harbor in gaseous or liquid form. In particular, the present work aims to compare the risk to individuals and population related to supplying natural gas through pipeline with an alternative consisting of supplying LNG through isocontainers by trucks. The case study refers to a hypothetical site, and the results achieved can serve as reference case for safety analysts when alternatives solutions of natural gas supply are to be considered, providing useful indications on different risk situations.

Keywords: Natural Gas, LNG, Process safety, Risk analysis, QRA, Case study, Supply alternatives, Gas pipeline, Isocontainer, Individual risk, Societal risk.
The COVID-19 pandemic has posed difficult and contentious issues for society to deal with. At this scale, the kind of utilitarian calculus that has traditionally underpinned contentious developments in more normal situations, seems no longer to command the unquestioning acceptance of impacted populations. The paper discusses the applicability of Cost Benefit Analysis approaches to a range of issues that have arisen that have implications beyond the pandemic context. One view is that the future costs of lockdowns could be orders of magnitude greater than the immediate benefits. However, there are equally compelling arguments that, in the long run, the benefits of lockdowns will exceed the costs. This calculus whichever way it goes, seems to leave out a lot of reasonable caveats and ethical dimensions. These decisions have to be taken under considerable degrees of uncertainty and the paper explores the extent and the problems this causes in the different decision dimensions. The examples discussed are taken mainly from decisions taken at the national level, by the Netherlands, Canada and the UK, as there seems to be little consensus on a consistent approach globally. The paper raises the ethical issues emerging from the fundamental approach seemingly required in a market driven society, where numbers must trump people with the implication that, if profit is regarded as represented only by numbers, people may become expendable commodities.

Keywords: QALY, COVID19, Cost benefit analysis.

Inherent safety is considered the best approach to risk reduction. Academia and industry personnel have studied this topic for a long time. However, many misconceptions and lack of clarity still exist in the industry. Also, there have been many variations in defining the concepts and principles of inherent safety. The paper aims to analyse the concept in a novel way after reviewing past works on the inherent safety concept. The work focuses on the in-depth and systematic identification of hazards for better understanding. It seeks the factors contributing to creating the hazard to propose inherent safety measures. Identifying inherent hazard and risk factors makes it easier for the user to quickly find an inherently safer solution. This approach draws a clear distinction between three risk reduction measures, inherent, passive and active. Inherent safety measures try to reduce the hazard from origin or try to attenuate inherent hazard and risk factors, while passive and active measures only focus on reducing the consequences of accidents or hazardous events. They do not intend to reduce the inherent hazard and risk factor from the system. This paper presents a new definition of inherent safety with a new perspective and identifies the principles used to achieve inherent safety.

Keywords: Inherent safety, Inherently safer, Hazard, Risk management, Chemical process and systems, Oil and gas industry.
Improving Risk Management of Smart City Lighthouse Projects Through Collaborative Governance and An Integrated Risk-Resilience Based Approach

Konstantina Karatzoudi and Terje Aven
University of Stavanger, 4036 Stavanger, Norway.
E-mail: konstantina.karatzoudi@uis.no, terje.aven@uis.no

Smart City Lighthouse projects are a specific European innovation instrument for large-scale deployment and replication of Smart City and energy solutions. This cross-country and multidisciplinary setup fosters innovation, but it also leads to complexity. Risk management represents a key approach for handling this complexity and meet the various types of risks that can occur in smart city lighthouse projects. A review of current risk management practices in smart cities lighthouse projects has been conducted including all the existing seventeen Lighthouse projects. The review showed that the risk management in most lighthouse projects is in line with common standards as described in ISO 31000 and the Open PM2 Project Management Framework highlighting identification, analysis, evaluation, and treatment of project risks. However, the occurrence of several high-profile cybersecurity and privacy related vulnerabilities has uncovered the need to expand the risk management beyond these standards. The present paper investigates how the risk management can be improved through collaborative governance, highlighting stakeholder participation and involvement, and adopting an integrated risk-resilience based approach. A specific smart city lighthouse project is used to illustrate the discussion.

Keywords: Risk management, Smart city, Complexity, Collaborative governance, Resilience, Innovation.
Nowadays, the fourth industrial revolution is happening with the new paradigm and technologies. One of the pillars of this revolution is the Industrial Internet of Things (IIoT), which integrates sensors into the manufacturing system and helps to connect the machines, products and methods as an interconnected system. The amount of available data (5V: Volume, Velocity, Variety, Value, Variability) then continues to increase through various components (sensors, PLCs, etc.) (Iung (2018)). These data are usually used for the purpose of improving the performance of the production system. The important objective is keeping the production systems under continuous monitoring of system’s function and corresponding health states. System health state can be found out by observing system behaviour data which are collected from installed sensors. Then we apply diagnostics and prognostics techniques on the observations: Prognostics and Health Management (PHM) (Pecht (2009)). Various precision sensors, high-speed data acquisition devices, computers and servers in IIoT constitute a new development space for PHM (TianShu et al. (2019)). In this study, we provide an overview of PHM methods. The review focuses on data-driven approaches that rely on available observed data and statistical models. We have two main types of observed data: direct data and indirect data. The direct data are directly related to the system health status while this relation is indirect or partial for the latter (Si et al. (2011)). Thus, our study focuses on two types of models: the direct-observed-state models and the partial-observed-state models. Firstly, we review recent advancements of the direct-observed-state models which can be distinguished into continuous process and discrete processes. Secondly, we focus in more detail on the partial-observed-state models. Thirdly, we illustrate the implementation of PHM methodologies by a real world application where data collected from sensors are exploited to predict system health states. Finally, we identify the gap in this field and highlight future research challenges.
Identification of Time-varying Parameters using Variational Bayes – Sequential Ensemble Monte Carlo Sampler

Adolphus Lye1,2, Ander Gray1,2, and Edoardo Patelli2
1 Institute for Risk and Uncertainty, University of Liverpool, United Kingdom.
2 Centre for Intelligent Infrastructure, University of Strathclyde, United Kingdom.

This work presents an extended sequential Monte Carlo sampling algorithm embedded with a Variational Bayes step. The algorithm is applied to estimate the distribution of time-varying parameters in a Bayesian filtering procedure. This algorithm seeks to address the case whereby the state-evolution model does not have an inverse function. In the proposed approach, a Gaussian mixture model is adopted whose covariance matrix is determined via principle component analysis.

As a form of verification, a numerical example involving the identification of inter-storey stiffness within a 2-DOF shear building model is presented whereby the stiffness parameters degrade according to a simple State-evolution model whose inverse function can be derived. The algorithm is applied to estimate the distribution of these time-varying parameters in a Bayesian filtering procedure. This algorithm seeks to address the case whereby the state-evolution model does not have an inverse function. In the proposed approach, a Gaussian mixture model is adopted whose covariance matrix is determined via principle component analysis.

Keywords: Variational bayes, Bayesian model updating, Sequential monte Carlo, Uncertainty quantification, Gaussian mixture model, Markov model.
Improving reliability predictions, this paper proposes a simulative approach that implements the uncertainties of test bench into the life modelling based on L-DoE. By using the Monte Carlo method, the effect of the uncertainties of the implemented sensors on the experimental design is projected. This allows to derive the uncertainty in the development of life models and to simulate the effect on failure predictions. The result of the simulation is a life model that considers the uncertainties of the sensors used in the test. Using the Proportional Hazard model and a full factorial experimental design it is shown that without consideration of test bench uncertainties uncertain reliability predictions can be expected.

Keywords: Design of Experiments (DoE), Lifetime modelling, Uncertainty, Test bench, Monte carlo simulation.

MO3D: 228 17:10 hrs

Deriving Prior Knowledge from Lifetime Simulations for Reliability Demonstration while Considering the Uncertainty of the Lifetime Model

Achim Benz1, 2, Alexander Grundler1, 2, Martin Dazer1 and Bernd Bertsche1

1 Reliability Department, Institute of Machine Components, University of Stuttgart, Germany. E-mail: alex. grundler@ima.uni-stuttgart.de,
2 Head of Reliability Department, Institute of Machine Components, University of Stuttgart, Germany. E-mail: martin. dazer@ima.uni-stuttgart.de

Although lifetime simulations are today widely used to predict the failure of a product or component for field operation during early stages of product development processes, the data generated from them are not used as prior knowledge for reliability demonstration due to a lack of adequate statistical content. The results are thus only used to assess design variants and compare requirements to the products’ simulated performance. Using an SN curve as a sample lifetime model, it is demonstrated how the necessary reliability statement can be obtained, including a confidence level. Initial work has shown how this can be achieved but has not considered the error in extrapolating the lifetime model to the field load. In this paper, the uncertainty of the lifetime model is therefore taken into account by applying the bootstrap procedure to the test sample data and considering various calculation methods for the lifetime model. Studies indicate that the pearl string method is preferable to the load level method because the load level method can only provide accurate results if the underlying data is appropriate. A Weibull distribution with a confidence interval calculated by following the presented methodology can be turned into a beta distribution and used as prior knowledge for reducing the required number of samples in reliability demonstration testing.

Keywords: Prior knowledge, Lifetime data, Simulation, Confidence level, Bootstrapping, Reliability demonstration, Success run test.

Session [MO3E]—Organizational Factors and Safety Culture

Day/Date/Time Monday, 20 Sep. 2021/16:10–17:30 hrs

Venue Amphithéâtre

MO3E: 015 16:30 hrs

Spontaneous Volunteering During the Utøya Terror Attacks – A Document Study

Asbjørn Lein Aalberg1 and Rolf Johan Bye2

1 SINTEF Digital, Norway. E-mail: asbjorn.llein.aalberg@sintef.no, 2 asbjorn.llein.aalberg@sintef.no

During the terrorist attacks in Norway 22th of July 2011, 77 persons was killed and many more injured. The attacks led to massive, multifaceted efforts of civil society, especially concerning the attacks at Utøya, for example - nearby civilians took part in dangerous rescue missions in private boats and more than 250 youths was taken care of in an ad hoc rescue center at a nearby camping. Most of the post-catastrophic research and investigations on the terror attacks have focused on the efforts of the official first responders and their respective authorities, and to a lesser degree highlighting the role of response from community and bystanders. As part of the ENGAGE project, we conduct a document study to shed light on civil society contributions to societal resilience during the terror attacks at Utøya. Based on academic literature investigation reports, newspaper articles and autobiographical books, we represent the Utøya terror attacks from what is known regarding helpers. We emphasize four domains of analysis, where we identify and discuss i) characteristics of the academic literature on the Utøya attacks, ii) a typology of actors, iii) volunteer coping actions, and iii) contextual factors. The findings show a dynamic and autonomous nature of spontaneous volunteering, influenced by contextual factors like degree of trust in formal response organizations, spatial proximity, professional and local knowledge.

Keywords: Volunteer, Terror, Crisis management, Resilience, Utøya.
Super Users as Learning Agents in Organization's Eco-System of Learning?
Jonas R. Vaag and Gunhild B. Sætren
Nord University, Norway.
E-mail: jonas.vaag@nord.no

Purpose: Even though there are numerous attempts of clarifying crucial factors for successfully implementing technological changes in organizations, research shows that such processes very often are considered unsuccessful (e.g. Dwivedi et al., 2015). Recruiting and using so-called super users when introducing new technology in organizations, has become a common trend (Sitthidah & St-Mauritz, 2016). However, little is known about the criteria that optimally should ground the specifics for choosing a super user. From a safety aspect, having well founded process on how a super user should teach staff how to use new technology, is of utterly importance, as wrong understanding of how it works could potentially have fatal outcome.

Research question: Which criteria should be emphasized when selecting super users?

Method: 10 semi-structured interviews were conducted and analyzed using thematic analysis.

Results: The results were that criteria for super users should be (1) availability and local knowledge (2) technological skills (3) pedagogical skills), and (4) proactiveness.

Conclusion: Based on a safety aspect, recruiting an internal staff would provide the important understanding of local knowledge. Further, recruiting internal staff would provide learning on an organizational level. This is demonstrated by a model called the organization’s eco-system of learning (Eco-Learn).

Keywords: Safety, Organizational changes, New technology, Organizational learning, Super user, Learning agent.

Professionalization in Safety: Enhancing Socialization by Eliciting Forms of Identity
Christian Foussard1, Wim Van Wassenhove2 and Cedric Denis-Remis3
1Consultant Risk Management & Process Safety, Senior Lecturer, Paris, France.
E-mail: christian.foussard@mines-paris.org
2CRC MINES ParisTech /PSL Research University, Sophia-Antipolis, France.
E-mail: wim.vanwassenhove@mines-paristech.fr
3IEE IE MINES ParisTech / PSL Research University, Paris, France.
E-mail: cedric.denisremis@psl.eu

Professional socialization is a major challenge for the safety professional throughout his career (Wybo & Van Wassenhove, 2016). In order to capture the complexity of the process of professional socialization of safety practitioners, a useful framework has been established with the concept of forms of identity which encompasses both professional recognition of skills and a satisfactory career path. The forms of identity are the result of a double transaction (biographical & relational) which structures the professional socialization of individuals (Dubar, 1992). On the one hand, the evolution of professional identity is linked to a process of recognition by peers and institution, which can be seen as a relational transaction between the safety professional and the organization. On the other hand, the construction of social identity can be seen as an internal biographical transaction polarized between continuity and rupture. Each safety professional has to deal with their own way of socializing. This paper presents the educational innovation implemented within the PSL-Mines ParisTech post-graduate master “Industrial Risk Management” between 2010 and 2020 as a part of a design that promotes effective learning environment (Foussard & Van Wassenhove, 2019). To support the future safety professional in this sensitive process of professional socialization, several initiatives based on the framework of forms of identity have been set. A discussion on the relevance of this learning device is given on the basis of qualitative feedback of the alumni.

Keywords: Professionalization in safety, Professional socialization, Safety education programs, Forms of identity, Safety culture.
From the theoretical perspectives, traditionally, safety and security represent different contexts, which challenges exchanging ideas, methods, and results between these two scientific fields. Therefore, a distinction between these two contexts, based on the intentionality behind unwanted events, the way risk is understood, and the methods used to assess and manage risk in these contexts. From the practical point of view, distinguish between the roles and responsibilities of these two professional communities are unclear. This study explores the extent of the commonalities and differences in safety and security professionals’ current stage. We conduct a qualitative analysis based on 28 semi-structured interviews with the safety and security domain professionals, focusing on the conceptual narratives, responsibilities, and risk assessment approaches from a practical perspective. Our findings indicate that while the professionals in these two fields strongly distinguish between the context of their activities, they share many commonalities regarding their day-to-day tasks. A fundamental common problem in managing risk is that it is difficult to express uncertainty and determine how likely it is that an incident/event happened; managing risk is that it is difficult to express uncertainty and their severity. Yet, specific challenges apply when learning data-driven fault diagnostics models. First, an operating asset is exposed to varying operating conditions and external influencing factors that cannot be controlled or known before. This results in high variability of the condition monitoring data within the healthy condition that is not caused by faults. A data-driven model might raise a false alarm for inherently unknown variations in the data if these were not part of the training distribution. Adding complexity to the task of defect diagnostics is that data often lacks detailed labeling to diagnose a fault. For example, the operator might not distinguish between different fault types or different fault severities in its maintenance reports. In that case, detailed information on the fault type and its severity is lacking when training the corresponding models, which essentially makes it an unsupervised learning task. The task of unsupervised fault diagnostic is often approached by clustering a low-dimensional feature representation of the data. Auto-Encoders (AE) are often used to learn a compact feature representation. Yet, the objective when training an AE is to fully reconstruct the input signal i.e. to pass all information about the data through the feature layer including data variations relating to varying operating conditions. This makes them sensitive to changing operating conditions at inference time. Contrastive learning poses an interesting alternative to extract features that explicitly aims to extract...
In this work, we propose contrastive learning for the task of defect diagnostics. Our work is the first that applies the triplet loss to PHM applications. Further, we adapt the triplet loss to the case where no refined labeling is available. The resulting feature representation of the data shows to be particularly suited for defect identification under the limitation that certain operating conditions have not been observed in the training dataset. Our evaluation is conducted on the CWRU Bearing benchmark dataset.

Keywords: Faults detection & diagnostics, Contrastive learning.

MO3F: 175 16:30 hrs

Physical Security Risk Analysis for Mobile Access Systems Including Uncertainty Impact

Thomas Términ1,4, Daniel Lichte2 and Kai-Dietrich Wolf1,5

1Institute for Security Systems, University of Wuppertal, Germany. E-mail: termin@uni-wuppertal.de, lichte@iss.uni-wuppertal.de
2Institute for the Protection of Terrestrial Infrastructures, German Aerospace Center, Germany. E-mail: daniel.lichte@dlr.de

Protection against car theft, involving organized crime, is a growing threat for car owners as well as fleet management providers. This brings the use of security technologies into automotive industry. The evaluation of security and the justified use of measures to reduce vulnerability of car security systems is perceived as a special challenge for vendors and users of mobile access systems (MAS), as usually only limited resources for design and analysis are available. A lack of adequate reference works and specifications in the form of concrete recommendations for action, guidelines or standards often leads to proprietary security assessments heavily relying on compliance checks. These assessments often lack sufficiency regarding application-specificity and target-orientation in terms of a good cost benefit ratio. This is true for MAS in particular, as they are relatively new products with specific use cases and boundary conditions. The open-available Performance Risk-based Integrated Security Methodology (PRISM) allows a performance-based physical security assessment of critical infrastructures (CRITIS) and initiated a paradigm shift towards performance-based methods within this area. However, PRISM comprises semi-quantitative approaches only and thus does not allow for the consideration of uncertainty impact. Moreover, the approach has not been applied to mobile access systems (MAS) yet. This paper aims at applying the concept of PRISM to the use case of MAS by extending and optimizing it to enable a holistic risk assessment considering uncertainties.

Keywords: Mobile access systems, Security, Risk analysis, PRISM, Uncertainty, Decision making under uncertainty.

MO3F: 231 16:50 hrs

Cyber and Electromagnetic Activities and Their Relevance in Modern Military Operations

Radovan Vaisick1 and Alena Oulehlová2

1Department of Intelligence Support, University of Defence, The Czech Republic. E-mail: radovan.vaisick@unob.cz
2Department of Military Art, University of Defence, The Czech Republic. E-mail: alena.oulehlova@unob.cz

The paper examines issues related to coexistence and integration of military activities conducted within the cyberspace and electromagnetic environment, as inseparable parts of our security environment. Contemporary and emerging security threats as well as lessons learned from recent military operations have already proved that in order to achieve operational objectives in the traditional physical domains (land, air, maritime, space) it is crucial to ensure dominance in the non-physical domains, i.e. the cyberspace, electromagnetic environment and information environment. As they overlap each other, while being exploited by multiple military and non-military stakeholders and actors, it is necessary to identify these overlaps. At the same time, to deliver the synergic effect, an operational battle staff need to deconflict, coordinate, synchronize and integrate cyber and electromagnetic activities (CEMA) with other supporting activities (e.g. intelligence, information operations etc.). The authors describe the fundamentals of the CEMA concept, supported by a case study of its practical employment in military operations. They also compare various approaches applied to implementation of this concept by selected armed forces and security organizations. Based on the findings of this comparison, common and specific features of different approaches are specified. The results and findings presented in the article can be used during the implementation process of the CEMA concept not only into the doctrinal documents of national armed forces, but they could also provide specific solutions in support of future deployments of multinational task groups.

Keywords: Cyber operation, Electronic warfare, Information operations, Spectrum management operation, Military operation, Intelligence, Non-physical domains, Threat.
Threats posed by civilian drones are becoming an increasing security risk for critical infrastructures as well as events or companies. In order to protect an asset against a drone intrusion a security system is necessary, which in general is described by its capabilities of protection, detection, and intervention. The variety of different threat scenarios posed by drones raises the need for detailed analysis of scenario specific requirements on detection systems. However, there is a lack of comprehensive scenario analyses in the literature that include relevant parameters for detection. Thus, in this paper a scenario analysis is conducted to identify consistent threat scenarios including factors critical for drone detection. The study is based on morphological analysis and applies methods of influence analysis and Cross-Impact Balance analysis. Using these methods, factors that influence the detectability of drones are specified and key factors are determined based on literature reviews or expert interviews. For the assessment of internal consistency of a scenario, a Cross-Impact-Balance analysis is conducted. Exemplarily, the paper shows how a remaining consistent scenario can be applied to derive requirements for a drone detection system or to validate existing systems regarding suitability for feasible threat scenarios.

Keywords: Critical infrastructure protection, Security, Civilian drones, Scenario analysis, Morphological analysis, Cross-impact analysis, U/W, Requirements analysis, Drone detection system.
Rescue of Personnel after Emergency Evacuation from Offshore Petroleum Installations

Jan-Erik Vinnes1, Stine A. Ranum2,3, Maria S. Wold2,3, Trond S. Johansen2, Sigurd R. Jacobsen2,4, and Arnt-H. Steinbakke2,5

1Preventor, Norway. E-mail: jan.erik.vinnes@preventor.no
2Safetec Nordic, Norway. E-mail: stine.albertsen.ranum@safetec.no, maria.snorteland.wold@safetec.no, stillaug.johansen@safetec.no
3Petroleum Safety Authority, Norway. E-mail: sigurd.jacobsen@ptil.no, arnt.steinbakk@ptil.no

The Norwegian Oil and Gas Association in Norway has developed a set of guidelines on how cooperation on area-based emergency response should be practiced. The guideline covers emergency evacuation but has limited focus on rescue of personnel after evacuation. Rescue in this context implies picking up, or escorting, evacuated personnel that are in the water, life rafts, or lifeboats, to a safe location. Rescue of personnel involves use of shared area-based resources, such as Fast Rescue Craft from emergency response and rescue vessels and search and rescue helicopters. Rescued and injured personnel will be given lifesaving first aid and medical treatment and transported to an onshore base. The paper reviews lessons learned from emergency evacuation cases to sea on the Norwegian Continental Shelf and worldwide offshore oil and gas operations. The research is based on a study performed for the Petroleum Safety Authority Norway in 2019, where rescue of personnel from sea after emergency evacuation was one of the main topics addressed. The lessons learned covers topics such as availability of resources; cooperation between resources; responsibilities when utilizing shared resources; and performance influencing factors for successful rescue operations.

Keywords: Offshore installations, Emergency preparedness, Evacuation, personnel rescue, Area-based emergency response, Shared resources, Lesson learned.

Emergency Communication Challenges in the Oil and Gas Sector of Norway

K. Øien1, K. Bernsmed2 and S. Petersen3

1SINTEF Digital, Trondheim, Norway. E-mail: Knut.Oien@sintef.no, Karin.Bernsmed@sintef.no, Stig.Petersen@sintef.no

The purpose of the work presented in this paper, which was conducted for the Petroleum Safety Authority Norway (PSA), is to give the oil and gas industry a better understanding of the role and vulnerability of communication networks, especially in emergency situations when a defined situation of hazard and accident (DSHA) has occurred. The paper focuses on external communication between offshore and onshore in emergency situations, i.e., emergency communication to land. This is part of a larger project where the main goal has been to gain knowledge about risks, threats, vulnerabilities, and the importance of Information and Communication Technology (ICT) security for industrial systems. The work is mainly based on document reviews, interviews, and work meetings. Interviews were conducted with selected oil companies, rig companies and telecom operators. The work was carried out in an interdisciplinary project team. The content includes: i) the role of external communication networks during DSHAs, ii) risks and vulnerabilities in the communication networks, iii) consequences of the loss of connectivity, and iv) challenges and suggestions for improvements of regulations and standards. Fifteen recommendations are provided regarding measures for the industry, four of which are aimed at changes in standards, and eight recommendations are given regarding measures for the PSA, one of which is aimed at supervision and the other at changes in regulations.

Keywords: Emergency communication, External communication, Emergency preparedness, ICT security, Risk, Vulnerability, Regulations.

Digitalization in the Norwegian Oil- and Gas Industry: Identified Challenges

Geir Kjetil Hanssen1, Thor Myklebust2 and Tor Onshus3

1SINTEF, Norway. E-mail: geir.hanssen@sintef.no
2SINTEF Digital, Norway. E-mail: thor.myklebust@sintef.no
3SINTEF Digital and NTNU, Norway. E-mail: tor.onshus@ntnu.no

The Norwegian oil- and gas industry is being digitalized in search of more efficient operations, increased extraction of resources, and improved HES. Although offering appar-
ent opportunities, we also face considerable challenges when a traditional and safety-oriented industry applies modern information technologies, including cloud-based services. We have interviewed several actors to understand the drivers for ongoing digitalization processes and to uncover challenges related to the increased coupling between IT (information technology) and OT (operational technology), including safety-instrumented systems. Main findings from interviews and analysis highlight growth in coupling from OT systems to IT systems and further to cloud-based solutions, and increasing amounts of data flowing upwards. We found a sound awareness of not imposing control from IT to OT though, but there are however reasons for concern. These are discussed in the paper. We discuss the main findings and their potential implications and conclude with a series of recommendations to the industry and supervisory authorities.

Keywords: Digitalization, Oil and gas industry, Cybersecurity, Safety, IT-OT integration.

Session

Monday, 20 Sep. 2021

Day/Date/Time

16:10–17:30 hrs

Venue

Cointreau

MO3H: 008

16:10 hrs

Statistical Assessment of Safety Levels of Railway Operators

Jens Braband and Hendrik Schabe

1 Siemens Mobility GmbH, Ackerstr. 22, 38126 Braunschweig, Germany.

E-mail: jens.braband@siemens.com

2 TÜV Rheinland, Am Grauen Stein, D-51105 Cologne, Germany.

E-mail: schabe@tuev.com

Recently the European Union Agency for Railways (ERA) has received a mandate for "the development of common safety methods for assessing the safety level and the safety performance of railway operators at national and Union level", see EU Directive (2016). Currently, several methods are under development.

It is of interest how a possible candidate would behave and what would be the advantages and disadvantages of a particular method. In this paper, we study a version of the procedure. On the one hand side we analyse it based on the theory of mathematical statistics. As a result we present a statistically efficient method the rate-ratio test based on a quantity that has smaller variance than the quantity handled by the ERA. Then, we support the theoretical results with the help of a simple simulation study in order to estimate failure probabilities of the first and second kinds. In particular, we construct such alternative distributions which the decision procedure cannot distinguish. We will show that the use of procedures that are optimal in the sense of mathematical statistics combined with the use of a characteristic that has small spread – here the number of accidents – is advantageous.

Keywords: Railway operators, Accident reporting, Rate-ratio test, Safety level, National reference value, Compound poisson distribution.

MO3E: 009

16:30 hrs

Application of the Cox Regression Model for analysis of Railway Safety Performance

Jens Braband and Hendrik Schabe

1 Siemens Mobility GmbH, Ackerstr. 22, 38126 Braunschweig, Germany.

E-mail: jens.braband@siemens.com

2 TÜV Rheinland, Am Grauen Stein, D-51105 Cologne, Germany.

E-mail: schabe@tuev.com

The assessment of in-service safety performance is an important task, not only in railways. For example, it is important to identify deviations early, in particular possible deterioration of safety performance, so that corrective actions can be applied early. On the other hand the assessment should be fair and objective and rely on sound and proven statistical methods.

A popular means for this task is trend analysis. This paper defines a model for trend analysis and compares different approaches, e.g. classical and Bayes approaches, on real data. The examples show that in particular for small sample sizes, e.g. when railway operators shall be assessed, the Bayesian prior may influence the results significantly.

Keywords: Cox model, Poisson distribution, Railway safety, Severe accident, Estimator, Bayes.

MO3E: 010

16:50 hrs

Research on Fault Propagation Characteristics of Fully Automated Operation System Based on Complex Network

Fei Yan, Yanmei Wang, Mo Liu, Ru Niu and Tao Tang

1 School of Electronic and Information Engineering, Beijing Jiaotong University, China.

E-mail: 9903808@bjtu.edu.cn, 18125135@bjtu.edu.cn, 525808@bjtu.edu.cn

2 State Key Laboratory of Rail Traffic Control and Safety Beijing Jiaotong University, China.

E-mail: ruiwu@bjtu.edu.cn

This paper selects the Vehicle On-Board Controller (VOBC) subsystem of Beijing Metro Yanfang line fully automatic operation system as the research object. By analyzing the
fault data of the VOBC subsystem, a fault propagation model of VOBC subsystem is established with failure events as connections based on the complex network theory, and the statistical characteristics of the established fault propagation model are analyzed. In order to quantitatively analyze the fault propagation path and mine the fault propagation rules, based on the established model, the load-capacity model of Cascading failure in complex networks is adopted to design an algorithm to search the maximum possible fault propagation path in VOBC fault propagation network, and it is found that under the condition of controlling cost, the initial danger degree and danger degree of failure event are reduced by taking certain prevention and control measures, which can shorten the length of the maximum possible fault propagation path and improve the reliability of the system operation.

Keywords: Complex network, Fully Automatic Operation System (FAO), Fault propagation, Cascading failure.

MO3I-133 17:10 hrs
A Case Study on Managing the Complexity of Service Failure Modes in IoT Systems
Sebastian Klabes¹ and Marc Zeller²
1 RAMS Department, Siemens Mobility AG, Hammerweg 1, Wallisellen, Switzerland.
E-mail: sebastian.klabes@siemens.com
2 Technology, Siemens AG, Otto-Hahn-Ring 6, Munich, Germany.
E-mail: marc.zeller@siemens.com

With the release of IoT devices an increasing amount of Operation Technology (OT) functionalities is depending on Information Technology (IT) services. Hence, these edge-based or cloud-based IT services can become mission critical. Therefore, we need to include them into the reliability analysis of the system. However, functions of a system, that are partly implemented by OT and IT services are subject to a significant amount of failure modes, which need to be assessed during the reliability analysis. To manage the combinatorial complexity of component failure modes in heterogeneous IoT systems realizing missing critical functionalities, we propose the application of the Component Fault Trees (CFTs) methodology. In this paper, we illustrate the advantages of the CFT methodology for the reliability analysis of complex and heterogeneous IoT systems by a case study in the domain of railway control systems. In this case study, traffic control systems provide crucial functions which are enhanced by a Traffic Management System (TMS). The case study clearly shows how the usage of the CFT methodology eases the analysis of such a complex, heterogeneous IoT system by managing the combinatorial complexity of component failure modes.

Keywords: IoT, Reliability, Fault tree, Component fault tree, CFT, Case study.

Session [MO3I]—AI for safe, secure and dependable operation of complex Systems
Day/Date/Time Monday, 20 Sep. 2021/16:10–17:30 hrs
Venue Giffard

MO3I: 156 16:10 hrs
Graph Networks for Power System Dynamics Prediction
Haiwei Xie¹ and Olga Fink²
Chair of Intelligent Maintenance Systems, ETH Zurich, Switzerland.
E-mail: a.haiwei.xie@ethz.ch, o.fink@ethz.ch

The power system network has been one of the most complex nonlinear systems in the world and predicting, maintaining and improving its reliability has been the pursuit of the entire industry 1. Power system dynamics reflect the stability status of the system and provide critical reference for secure system operation. The physical phenomena of power system dynamics are normally computed by sophisticated time-domain simulation tools, the accuracy of which largely rely on the modelling precision of the power system components. However, the recent revolution of new technologies in power systems, such as the integration of renewable energy sources, makes the significant challenges in the performance of traditional tools which are not able to provide sufficiently detailed models for new emerging participants. Hence, to overcome these challenges, new prediction methods are required to predict the power system dynamic states. With the increasing availability of large amounts of measurement data in power systems, machine learning methods provide a promising direction of training simulators directly using measurement data. These methods explore information from acquired data and are more robust to the introduced uncertainty. However, the end-to-end learning methods show limited performance when facing large state spaces and complex dynamics. Furthermore, the models are inherently ‘black-box’ models resulting in a limited interpretability. Inspired by the pioneering work in the field of graph networks that combine the learning capability of neural networks with the interpretability of the physical properties 2, we propose Graph Network based Simulators (GNS) for power system rotor angle dynamics. We first model the dynamic state variables at each bus as nodes in the graph. A full connectivity between each node pairs is assumed such that the pairwise electrical correlations are approximated with the message function without any prior knowledge about the physical topology.
The graph networks introduce strong inductive biases motivated by power system properties which improve the performance of the algorithm, reduce the amount of required training data and improve the extrapolation capabilities. Also, the method provided more flexibility compared to the physics-informed neural network-based simulator since it does not need the specific topology connection information in the training. Our framework was validated on a 4-bus power system to accurately simulate rotor angle dynamics under different operating conditions. As further work, we plan to investigate the generalisation ability, data efficiency and scalability of this method.

Keywords: Graph network, Power system dynamics, Prediction.

Within the field of fault diagnostics and prognostics of industrial machinery and systems, deep learning models have risen in popularity in recent years, mostly due to their ability to automatically extract features from multi-sensor data. Nevertheless, while novel sensing technology has made possible for the mainstream industry to equip their physical assets with plenty of sensors and therefore acquire massive quantities of operational data, the labeling process (i.e., identification of health states) of such data is still an open problem to overcome in order to use it effectively alongside AI techniques. A novel solution to this problem is to develop algorithms with semi-supervised capabilities that can both use the scarce and expensive-to-produce labeled portion of the data as well as the abundant, but unlabeled data samples. In this paper, we present a coupled training algorithm that can be used to conjunctively train a fully unsupervised variational auto-encoder along a fully supervised recurrent neural network to perform fault diagnosis and prognosis as well remaining useful life prediction using time series as input data. The coupled training of the model is capable of encoding information from both the supervised and unsupervised portions of the data into the gradients, effectively performing semi-supervised learning. We demonstrate the proposed approach by a prognosis case study involving turbofan data from the well-known CMAFSS benchmark dataset.

Keywords: Deep learning, Semi-supervised learning, Variational auto-encoders, Reliability, CMAFSS, Prognosis.

In modern machinery manufacturing and applications, the components are becoming more and more inseparable. When one of the parts fails, it may affect the normal operation of the entire equipment. That is why the fault diagnosis has become very crucial in industrial applications. Finding the problematic parts as early as possible can avoid costly accidents in time. This paper proposes a new rolling bearing fault diagnosis method based on grey relational degree (GRD) and multi-class support vector machine. First, the public dataset of Bearing Center of Case Western Reserve University (CWRU) and the public dataset of the team at Xi’an Jiaotong University (XJTU-SY) are used to form sample sets and build multi-domain feature sets. Then, we use the ReliefF algorithm to reduce the dimensionality of the feature set to establish a new feature subset. Then, grey relational degree classifier and multi-class support vector machine classifier are used for fault diagnosis, respectively. Lastly, the fault diagnosis effects of the two classifiers were compared. The results show that both of these two classifiers can efficiently identify rolling bearing faults, and the multi-class support vector machine classifier performs better.

Keywords: GRD, Multi-class support vector machine, Fault diagnosis, CWRU, XJTU-SY.
A Temporal Pyramid Pooling-Based Convolutional Neural Network for Remaining Useful Life Prediction

Yun Song1,2, Laurens Bliek1,2, Tangbin Xia1 and Yingqian Zhang1,

1Department of Industrial Engineering & Innovation Sciences, Eindhoven University of Technology, Netherlands. E-mail: y.song@tue.nl, l.bliek@tue.nl, yqzhang@tue.nl.
2Department of Industrial Engineering & Management, Shanghai Jiao Tong University, China. E-mail: xtbxtb@sjtu.edu.cn.

Removal of Useful Life (RUL) prediction is a key issue in Diagnostics and Health Management (PHM). Accurate RUL assessments are crucial for predictive maintenance planning. Deep neural networks such as Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) have been widely applied in RUL prediction due to their powerful feature learning capabilities in dealing with high-dimensional sensor data. The sliding time window method with a predefined window size is typically employed to generate data samples to train such deep neural networks. However, the disadvantage of using a fixed-size time window is that we might not be able to apply the resulting predictive model to predict new sensor data whose length is shorter than the predetermined time window size. Besides, as the length of sensor data varies, the traditional unchanged and subjectively set time window size may be inappropriate and impair the prediction model’s performance. Therefore, we propose a Temporal Pyramid Pooling-Based Convolutional Neural Network (TPP-CNN) to increase model practicability and prediction accuracy. With the temporal pyramid pooling module, we can generate data samples of arbitrary time window sizes and use them as inputs of CNN. In the training phase, CNN can learn to capture temporal dependencies of different lengths since we feed in samples with different time window sizes. In this novel manner, the learned model can be used to test data with arbitrary sizes, and its predictive ability is also improved. The proposed TPP-CNN model is validated on the C-MPASS turbine engine dataset, and the experiments have demonstrated its effectiveness.

Keywords: Remaining useful life, Deep learning, Convolutional neural network, Temporal pyramid pooling, Time window size.

This study proposes a novel method to assess damages in the built environment and its corresponding economic impact after a natural disaster, using a deep learning workflow to quantize it. Thanks to an automated crawler, aerial images from before and after a natural disaster of 50 epicenters worldwide were obtained from Google Earth, generating a 10,000 aerial image database with a spatial resolution of 2 m per pixel. The study starts by using the algorithm U-Net [1] to perform semantic segmentation of the built environment from the satellite images in both instances (prior and post-natural disaster). For image segmentation, U-Net is one of the most popular and general CNN architectures. The U-Net algorithm used reached an accuracy of 95.5% in the segmentation. After the segmentation, we compared the disparity between both cases represented as a percentage of change. To create a numerical vector characterizing the events more precisely, the geographical characteristics of the location (climate, hydrography, and population) and feature descriptor of the satellite images were considered. Moreover, we added to these values specific details about the disaster found in the database EM-DAT [2] such as type of event, magnitude, number of people affected, material losses, and investment in the housing sector by humanitarian organizations. The former numerical features were introduced in a clustering algorithm called Self Organizing Maps (SOM) [3] to cluster similar disasters depending on their previously assigned characteristics. In this way, a map of changes is created where the 50 natural disasters are organized according to the change that occurred and the respective response and consequence. After a natural disaster, this map of changes serves as a predictor for future cases, allowing predicting potential changes based on a satellite image and the sector’s geographical condition. With this information, an urban planning process can begin immediately to mitigate the impact of the disaster.
Solar photovoltaic ("PV") adoption has largely occurred as the result of a distributed decision-making process, whereby individual people and businesses install the technology on their own property. The decentralization of energy systems decision-making is challenging to energy systems planners, who no longer wholly control systems development. In addition, the factors motivating individual solar adopters may be different than those traditionally governing energy systems infrastructures. Electricity systems and their interdependent critical infrastructures may therefore be exposed to new risk, reliability, and resilience challenges due to solar PV deployment. By contrast, solar PV deployment could also address some of these challenges by providing diversity and flexibility in energy generation, as well as by lowering the cost of energy for self-consumers. Given solar PV's complex impacts, energy system planners ought to be provided with decision-making support for understanding how certain policies will affect overall systems resilience. In that aim, we explore the impacts of distributed decision-making on energy and social resilience using solar PV uptake Switzerland as a case study.

Keywords: Resilience, Solar photovoltaic, Decision-making, Electricity system, Switzerland.

Flood Risk Assessment and Application of Risk Curves to Enhance Resilience

Ning Zhang\(a\) and Alice Alipour\(b\)

Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA, 50011.

E-mail: \(a\)ningzh@iastate.edu, \(b\)alipour@iastate.edu

A transportation network is a critical infrastructure system that serves everyday life, provides the backbone of economy, and is critical to national safety. And careful design of such a system is required to ensure smooth daily operation under stable conditions. However, with everchanging climates, transportation systems are exposed to significant weather-related hazards, with flooding events shown to be the dominant hazard in the U.S. due to their frequency and intensity. While flood events affect state agencies by requiring direct tax-dollar investments to repair damages, they also adversely influence communities by producing substantial indirect losses, and this can motivate state agencies, asset owners, and planners to develop with costeffective mitigation strategies. However, the uncertainty of flooding and the inter-system interdependency between infrastructures (such as roads and bridges) and traffic users on one hand and limited budgetary resources on the other hand, combine to challenge the design of a costeffective risk mitigation strategy. This is exacerbated by the fact that the estimation of indirect losses associated with closures resulting from damaged assets is difficult to achieve. To address such gaps, this paper develops an integrated risk assessment method that synthesizes various inputs, including hazards (here inland flooding), geographic features, spatial distribution of assets, and traffic, to simulate a real-life transportation system. This framework is capable of estimating actual physical infrastructure damages as well as quantitatively evaluating the indirect losses of traffic users such as traffic delays and opportunity costs closely associated with flooding risk. Based on risk assessment, a curve fitting of the annual probability of exceeding a state of monetary flood risk can be generated through various simulations of flood scenarios, and decision-makers can use this flood risk curve along with community-based prevention expectations of risk to implement proper mitigation strategies.

Keywords: Resilience, Solar photovoltaic, Change detection, Disaster prediction, SOM, Satellite imagery, Disaster data.
Dynamic Credal Networks for Resilience Assessment of Complex Engineering Systems

Hector Diego Estrada-Lugo1,2, T.V. Santhosh1,2,3, and Edoardo Patelli1,2,3

1Institute for Risk and Uncertainty, University of Liverpool, United Kingdom
2Bhabha Atomic Research Centre, Mumbai, India
3Centre for Intelligent Infrastructure, Department of Civil and Environmental Engineering, University of Strathclyde, United Kingdom

E-mail: a H.D.Estrada-Lugo@liverpool.ac.uk, b S.Santhosh@liverpool.ac.uk, c Edoardo.Patelli@strath.ac.uk

Complex engineering systems are of paramount importance for the correct operation of installations that allow functioning of the modern society and its economy. These systems are constantly under uncertain and potentially damaging conditions that may alter their operational performance. New system designs should consider safety aspects that maintain safe operating conditions while coping with disruptive events. In response to this need, the relatively new discipline of resilience engineering has been formulated to improve the safety of such complex systems. Resilience assessments must be carried out to study the system recovery after a disruptive event has occurred. Probabilistic models like fault tree or event tree analyses have been widely applied in safety-critical sectors such as process and/or nuclear industry due to their flexibility to model complex engineering systems and uncertainty quantification. However, such techniques moderate the modelling scope when representing the interdependencies of the components in the system and variations in time over a disruption event. Moreover, additional complications in the resilience assessment process arise when considering the epistemic uncertainty due to the lack of knowledge about the events and the operating conditions.

Dynamic credal networks are proposed in this work to model complex systems whose performance evolves in time. The methodology aims to quantify resilience in terms of the availability of the components. The novelty of this work resides in the development of a resilience assessment framework that allows taking into account the epistemic uncertainty related to the sparse or defective data. The resilience assessment of the key safety systems of an Advanced Thermal Reactor is carried out to evaluate the system recovery after a mishap adopting the dynamic credal network approach. The application of the proposed approach to producing a resilience analysis is described and results presented to demonstrate the applicability of the method.

Keywords: Resilience engineering, Dynamic credal networks, Safety critical systems, Imprecise data sets.
Norwegian authorities have an ambition to develop the E39 road as a continuous Coastal Highway Route between Kristiansand and Trondheim without ferries. The western coast of Norway is characterized by deep and long fjords cutting into the mountain landscape. These fjords are to be crossed, but this is challenging since the fjords are long, and up to 1350 meters deep and 5 km wide at favourable crossing points. Floating bridges are probably suitable to cross the fjords, but the coast and the fjords are exposed to significant ship traffic. Some of the new bridges along E39 will, when realized, be the world’s largest bridges of their kind, and critical to the future communication in Norway. Hence, the bridges need to be designed such that the risk from severe ship allisions from the ship traffic passing the bridge is within acceptable limits.

The Norwegian rules for bridge engineering demands that the design ship(s) should be assessed in a separate risk analysis, where the design ship size and mass, the ship’s speed at collision and the associated accidental actions (impact energy and momentum) are determined such that the risk acceptance criteria for the bridge crossing is fulfilled. The risk assessment includes both frequency analysis, and impact analysis. Previous ship allision research has not focused on floating bridges. Long and slim constructions, like a 5 km long floating bridge, have other challenges than fixed bridges.

This paper reviews and discusses the activities in a risk assessment suitable for floating bridges. We argue that ship allision risk may be a major contribution to the total risk. The risk assessment should pay more attention to the impact analyses of floating bridges, to understand how the bridge responds to a ship impact, like the distribution of the impact energy absorbed in global deformations and the impact energy to be dissipated through crushing of pontoons or bridge girder. The flexibility of floating bridge concepts can be beneficial when subjected to a ship allision, and it is important to understand how the bridge responds, both global and local, to an allision.

Keywords: Risk assessment, Bridge, Ship allision, Impact analysis, Floating bridge.
Functional Safety Assessment of Distributed Predictive Heating and Cooling Systems for Electric Delivery Vehicles

Yupak Satsrisakul1,2, Ivo Haring1,2,3, Mirjam Fehling-Kaschek1,3, Hans Peter Selz2,4, Pamela Blas4,5, Paolo Tombini1,2, Antonio Sciarretta1,2, Denis Guillaume1,2, Walter Czarnetzki1,5, Giovanni Romano1,2,4,5, Paolo Tombini1,2,4,5, Valentina Busini3,4,5, and Jiamin Zhu1,5

1 Safety Technology and Protective Structures, Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institut, EMI, Am Klingenberg 2, 76588 Uffenheim, Germany. E-mail: yupak.satsrisakul@emi.fraunhofer.de
2 Institute for Sustainable Technologies of the Industries, Bergische Universität Wuppertal, D-42119 Wuppertal, Germany. E-mail: Ivoharing@emi.fraunhofer.de
3 Institute for Simulation of Electric Power Systems, RWTH Aachen University, Aachen, Germany. E-mail: mirjam.fehling-kaschek@emi.fraunhofer.de
4 GreenIng GmbH & Co. KG, Bahnhofstraße 109, 71397 Leutenbach, Germany. E-mail: Hans-Peter.Selz@greening.de
5 IFP Energies nouvelles–Sciences et technologies du numérique, 1 et 4 avenue de Boss-Bérenger, 92269 Saint-Mandé, France. E-mail: jiamin.zhu@ifpen.fr

Keywords: Industry 4.0, BBN, Risk analysis, Project management, Risk factors, Food industry.

TU1A: 348 09:30 hrs

Multi-obstacles Influence on High-Pressure Methane Jets

Giovanni Romano1,2,4, Paolo Tombini1,2, Pamela Blas4,5, and Valentina Busini3,4,5

1 Romani Safety Management S.r.l., Via Savo 23, Orio Sotto, 20460 Bergamo, Italy. E-mail: giovanni.romano@romansafety.it
2 Dipartimento di Chimica, Materiali ed Ingegneria Chimica “Giovanni Natta”, Politecnico di Milano, Via Mancinelli 7, 20133 Milano, Italy. E-mail: pawlobfile@polimi.it, valentina.busini@polimi.it
3 TU1A: 348 09:30 hrs

Accidental high-pressure unignited jets of methane are one of the most dangerous scenarios investigated in industrial risk analysis. Considering a typical industrial plant, it is common that during the dispersion of a flammable gas cloud it interacts with one or more obstacles like buildings or equipment (e.g., columns, tanks, pipe rack, etc.), such interaction could significantly change the relevant damage areas. Due to this, in the industrial safety framework, empirical integral models elaborating only the free jet scenario could resolve in unreliable evaluations. Assuming the importance to correctly approach the scenario of a jet interacting with a series of obstacles the only numerical model able to properly evaluate any obstacle influence is the Computational Fluid Dynamics (CFD). The aim of this work is to investigate how a series of obstacles, in different configurations, can influence the jet cloud extent. Realistic case studies of industrial plant are analysed: a stationary jet at various pressure impinging a series of cylindrical vertical tanks placed along the axis release. Sensitivity investigation on the obstacles size and distance is performed with CFD simulations through the software ANSYS® CFX®.

Keywords: Methane, Computational fluid dynamics, Obstacle, Accidental release, High-pressure jets.
Comparative Risk Assessment and External Costs of Accidents for Passenger Transportation in Switzerland
Matteo Spada1 and Peter Burgherr2
Laboratory for Energy Systems Analysis, Paul Scherrer Institute, Villigen PSI, Switzerland.
E-mail: 1matteo.spada@psi.ch, 2peter.burgherr@psi.ch

The impact on health caused by accidents is one of the central indicators in a holistic assessment of mobility technologies and systems. Generally, when focusing on risks related to passenger transportation, only vehicle accidents are considered, neglecting other types of risks like, for example, the ones related to the production of the fuel used. The aim of this study is to present a comparative risk assessment for passenger transportation. In particular, it considers for each type of transportation (cars, bus, train, etc.) the combination of the vehicle accident risk and the accident risk that is related to the production and use of the fuel in different drivetrains (e.g., internal combustion, batteries, etc.) in a quantitative manner. This study uses a multi-dimensional accounting method to assess the import-adjusted fatality rates for the different fuels, and a Bayesian model is developed to assess accident risk in the current scenario. The proposed framework is applied to the case study of Switzerland, showing that vehicle accident risk indicators are significantly higher than the ones related to the upstream energy chain, except for airplane. In addition, e-bikes, e-scooter and motorbikes show higher risk and external costs compared to passenger car, bus, train and airplane.

Keywords: Passenger transportation, Risk assessment, External costs of accidents, Upstream energy chains, ENSAD, Switzerland.
The proposed strategy is based on the individual optimal maintenance plan of each component. Then, over a finite planning horizon, the scheduled maintenance actions are grouped together to ensure both the proper functioning of the system and to minimize the cost of maintenance.

To improve this previous work, a new long-term horizon (30 years) dynamic grouping maintenance strategy is proposed, dynamically considering new monitoring data. This new algorithm is applied to the maintenance optimization of the road infrastructure, using the Long-Term Pavement Performance database and French National Road 4 feedback data.

Keywords: Grouping maintenance, Dynamic grouping, Road infrastructure, Genetic algorithm, Multi-component system, Preventive maintenance, Autonomous vehicle.

TU1B: 201 09:10 hrs

Designing Reliability-Informed Customer Surveys

Neda Shafiei12, Jeffrey W. Herrmann13, Aaron Krive2, Guneet Sethi1 and Mohammad Modarres12

1Center for Risk and Reliability (CRR), University of Maryland, College Park, MD, USA.

E-mail: 1nshafiei@umd.edu, 2jkh2@umd.edu, 3mmodarres@umd.edu

2Amazon Lab 126, Sunnyvale, CA, USA.

Because new products enter the market very rapidly, estimating the reliability of these products is challenging, due to insufficient historical data. Customer survey data can be used as the prior information in a Bayesian analysis integrated with product returns, reliability tests, and other reliability data sources to improve reliability estimation. Customer surveys are usually designed for purposes other than reliability estimation. Therefore, extracting reliability information from these surveys may be hard or impossible. Even when possible, the extracted reliability information contains significant uncertainties. This study provides an approach for using a reliability-informed customer survey and analyzing the collected data. This paper describes the critical elements of a reliability-informed survey. A generic and flexible mathematical model is then proposed, which utilizes the critical elements to estimate the life distribution. The model converts the various applicable stress profiles into usage cycles/times and estimates the life distribution. The parameters of the life distribution model are estimated through the maximum-likelihood estimation method and Bayesian analysis. The proposed approach is generic and can be used to estimate the life distribution and the reliability of a product at different stress levels and times. A case study is presented in which the approach is applied to a device using a simulated dataset.

Keywords: Reliability, Life distribution, Customer survey, Questionnaire, Bayesian analysis, Drop test.
Misspecification Analysis of a Gamma- with an Inverse Gaussian-Based Perturbed Degradation Model by Using a New Expectation Maximization Particle Filter Algorithm

Nicola Esposito1,2, Agostino Mele2, Bruno Castanier1,3, and Massimiliano Giorgio2,3
1Université d’Angers/Laris, Angers, France.
E-mail: nicola.esposito@etud.univ-angers.fr
2Universitá degli studi della Campania “Luigi Vanvitelli”, Aversa, Italy.
E-mail: agostino.mele@unicampania.it, massimiliano.giorgio@unina.it
3Université d’Angers/Laris, Angers, France.
E-mail: bruno.castanier@univ-angers.fr

Gamma and inverse Gaussian degradation processes are often considered equivalent, though this is not true. For this reason, the misspecification of these models is a problem of concern. The point of this paper is evaluating whether and how the presence of measurement error impacts on this model misspecification issue. Mainly due to numerical problems, simulation studies that are carried out to evaluate the performance of maximum likelihood estimators of parameters, and/or functions of parameters, of the gamma and inverse Gaussian processes in the presence of measurement error are typically performed by using a relatively small number of synthetic datasets. In fact, computing the likelihood functions of these perturbed models, which are not available in closed form, requires intensive numerical methods that, at the same time, increase the computational burden and exacerbate convergence issues of numerical algorithms used to maximize the likelihood. In this paper, we propose a new expectation maximization particle filter algorithm, which allows to drastically simplify the estimation task, and present the results of a vast Monte Carlo study carried out by taking advantage of its use. The risk of incurring in a misspecification is evaluated as the percentage of times the Akaike information criterion leads to select the wrong model. The severity of a misspecification is evaluated in terms of its impact on remaining useful life estimates.

Keywords: Gamma process, Inverse Gaussian process, Degradation, Measurement error, Expectation maximization, Particle filter.

Session [TU1C]—Maintenance Modeling and Applications

TU1C: 256 09:50 hrs
Misspecification Analysis of a Gamma- with an Inverse Gaussian-Based Perturbed Degradation Model by Using a New Expectation Maximization Particle Filter Algorithm
Nicola Esposito1,2, Agostino Mele2, Bruno Castanier1,3, and Massimiliano Giorgio2,3
1Université d’Angers/Laris, Angers, France.
E-mail: nicola.esposito@etud.univ-angers.fr
2Universitá degli studi della Campania “Luigi Vanvitelli”, Aversa, Italy.
E-mail: agostino.mele@unicampania.it, massimiliano.giorgio@unina.it
3Université d’Angers/Laris, Angers, France.
E-mail: bruno.castanier@univ-angers.fr

In this paper the concept of importance of a component in a complex system is generalized from an attribute of a single component to an attribute of a group of components that can fail or be repaired simultaneously (e.g. cascading or common-cause failures can occur). Thus, the assumption that the components are mutually independent, often adopted in reliability analysis, is relaxed. It is also assumed that the considered system is a multi-state one, its states are partially ordered, and its operation can be modeled by a Markov chain. The group importance is defined as the probability that simultaneous failures or repairs of all components in a group G result in a transition from state a to state b, where a < b (if components in G fail) or a > b (if components in G get repaired). It is referred to as the importance of G to a transition from a to b. The paper’s main results are the formulas expressing the rates of transitions between the system states in terms of the above defined importances. It is also demonstrated in the last section how the obtained transition intensities can be applied to compute a number of practically important reliability parameters of the considered system. For better understanding, the presented theory is illustrated on the example of a simple three-state power supply system.

Keywords: Multi-state system, Non-binary structure function, Failure/repair rate, Group importance, Markov chain, Transition rate.
Data Supplement Model for Virtual Simulation of Maintenance Time Test Based on Multilevel Iteration and Neural Network

Yan Wang1, Dong Zhou2, Qidi Zhou1, Chao Dai2, Hongduo Wu1, Yunjing Liang1 and Chengzhang Chen2

School of Reliability and System Engineering, Beihang University, China.
E-mail: \texttt{yanwang@buaa.edu.cn}, \texttt{dongdong@buaa.edu.cn}, \texttt{zqdl@buaa.edu.cn}, \texttt{dwc07demodavy@buaa.edu.cn}, \texttt{720104104@buaa.edu.cn} and \texttt{2SY2014102@buaa.edu.cn}

Maintenance time reflects the level of product maintainability design, and is a quantitative parameter that must be considered in the stages of product finalization, evaluation and use. At present, the maintenance time of each stage is mainly obtained by statistical test, and then the specified time sample size is used to judge whether the product meets the requirements of maintainability design. However, due to its complex system, high test cost, too many test stages and long test cycle, the time data of aviation product finalization, evaluation and use stage can not reach the minimum sample size required by common statistical methods, which makes it difficult to carry out the maintainability verification of aviation equipment. At the same time, the simulation time data and historical time data of different stages obtained by virtual maintenance methods are not used in maintainability verification, resulting in a waste of resources. Therefore, this paper proposes a maintenance time verification data supplement model based on multi-stage iteration. Firstly, the model trains the virtual simulation data and maintainability related information through neural network to obtain training data, so as to supplement the time data in the finalization stage. Then, according to the time test data in the finalization stage, the model updates the simulation time data symmetrically and reversely to complete the supplement and update of the maintenance time data in the finalization stage. And with the continuous progress of the stage, the time test data of this stage and the training data of the previous stage are used to complete the supplement and update of the time data of this stage. The model can not only train the time and maintainability data of virtual maintenance by neural network to supplement the time test data of finalization stage, but also continuously supplement and update the maintenance time-data of three stages by multi-level iterative model. To sum up, the model fits the actual development process of the product, and has significant significance to reduce the maintenance and verification cost and shorten the development cycle.

Keywords: Virtual maintenance, Maintainability verification, Maintenance time, Iterative update, Multi-stage iteration, Neural network.

Modelling of Condition-based Inspections and Deterministic Maintenance Delays for Bridge Management

Tianqi Suna and Jørn Vatnb

Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, Norway.
E-mail: \texttt{sun.tianqi@ntnu.no} and \texttt{jorn.vatn@ntnu.no}

As a vital element of the Norwegian road network, a total of over 18,000 bridges are distributed across Norway. Their maintenance strategy can be classified as condition-based, where periodic inspections are carried out based on predefined rules and maintenance decisions are made based on the inspection findings. Given the large stock of bridges, it is sometimes difficult to follow all inspection plans due to limited budget and resources. An optimized inspection strategy with fewer inspections while remaining an acceptable risk level is therefore highly desired. Due to administrative advantages, periodic inspections are widely used in the industry. However, it is debatable that a condition-based inspection strategy may lead to improved system performance and reduced total cost. In view of the discrete condition levels and the current repair strategy in Norway, this paper proposed a modelling approach to incorporate condition-based inspections and deterministic maintenance delays in a multi-state Markov process. A case study is carried out based on empirical data from the Norwegian Public Roads Administration. The time-dependent state probabilities are calculated with both the proposed approach and Monte Carlo simulation for comparison and validation.

Keywords: Bridge maintenance, Empirical data, Multi-state system, Markov process, Condition-based inspections, Deterministic maintenance delays.

A Step-by-Step Method to Analyze Reliability and Maintainability From Historical Data Considering Usage Variables and Expert Knowledge

Fredy Kristjanpollera, Tomas Grubesichb, Raúl Stegmaiera, Pablo Viverosd and Oscar Arandad

Department of Industrial Engineering, Universidad Técnica Federico Santa María, Chile.
E-mail: \texttt{fredy.kristjanpoller@usm.cl}, \texttt{tomass@usm.cl}, \texttt{raul.stegmaier@usm.cl}, \texttt{pablo.viveros@usm.cl}, \texttt{oscar-aranda.08@gmail.com}

The representation of the life and repair behavior of assets is a fundamental topic for understanding a system.
A misrepresentation of the system and its assets could negatively impact the decision-making process from perspectives such as maintenance plans, investments in assets, spare parts strategies, among many others. On the other hand, the characteristics of the real production systems and the historical data registered in the information systems make it difficult to be able to represent realistically the behavior of the assets and the system. That is why this paper proposes a step-by-step method whose main objective is to guide the process for the representation of a productive system from the perspective of its life and repair behavior. This method is based on the development of three phases corresponding to the methodology to identify relevant knowledge, the perspectives for the analysis of the available data, and the analysis of the database using the conceptual model and the asset representation perspective. With these phrases, it is sought to generate the knowledge expressed in a conceptual model, and then integrate each database to the representation of each asset and for the system. With the implementation of this method, it is expected that the experts will reach a consensus on the historical behavior of the assets, which contributes to adequate modeling of reliability and maintainability.

Keywords: Reliability, Maintainability, Usage variable, System representation, Data source, Historical information.

Many companies in the process industry have standardised Safety Integrity Levels (SIL) according to IEC 61508 and IEC 61511 for mitigation functions, e.g. emergency shutdown. In most cases a rationale for the choice of these SILs is lacking, other than field experience and common practice. Mitigation functions differ from process safety functions in that they prevent the escalation of incidents, rather than preventing their occurrence. And whilst process safety functions are normally aimed at preventing a specific incident (e.g. failure of a vessel due to overpressure), emergency functions can mitigate the consequences of many different incidents.

Layer of Protection Analysis (LOPA) is often used to determine the SIL of process safety functions and is typically performed under the assumption that the mitigation functions are working, i.e. that incidents do not uncontrollably escalate. This paper discusses the difficulties in determining the required average Probability of Failure on Demand (PFD) of mitigation functions of process installations and proposes a method for this purpose. The method is based on the observation that in a risk-acceptance matrix the required PFD of mitigation functions is directly related to the consequence reduction they have to provide. This method is valid when there are incident scenarios on the border of the low-risk region of the company’s risk acceptance matrix and this border shows a linear relationship.
between the frequency and consequence categories. It is made plausible that these assumptions are reasonable.

A subsea case study is used to derive SILs of some mitigation functions for isolating production wells. The SILs derived are in line with those proposed in the Norwegian guideline NOG 070.

When the PFD is determined using the proposed approach, it is acceptable to perform LOPA whilst assuming that mitigation functions work as intended.

Keywords: Mitigation function, Probability of failure on Demand, PFD, Safety integrity level, SIL, Layer of protection analysis, LOPA, IEC 61508, IEC 61511, ESD.

The use of realistic failure data is an essential part of any quantitative reliability analysis of safety systems. It is also one of the most challenging parts and raises several questions concerning the suitability of the data, the assumptions underlying the data and what uncertainties are related to the data. The IEC 61508 and IEC 61511 standards present requirements to safety instrumented systems (SIS) for all relevant lifecycle phases, and have become leading standards for SIS specification, design, implementation, and operation. The IEC 61511 explicitly states that applied reliability data shall be credible, traceable, documented and justified and shall be based on field feedback from similar devices used in a similar operating environment. The paper discusses challenges that arise when collecting and applying field data from operational experience, including how to identify and treat systematic failures such as repeating failures and bad actors. Guidance is provided on use of failure data for different applications such as design calculations versus operational follow-up. The paper is based on extensive reviews of some thirty thousand SIS maintenance notifications from the Norwegian petroleum industry, documented in the 2021 revision of the PDS data handbook.

Keywords: Reliability data, Data collection, Data reporting, Data classification, PDS data handbook, Systematic failures.
Impact of Imperfect Proof Testing on the Performance of Safety Instrumented Functions

EUR ING Ben J. Eastern MSc CEng MIET
Principal Safety Consultant, ProSalus Limited, United Kingdom.
E-mail: bje.eastern@prosalus.co.uk

Periodic proof testing (PT) is critical in providing adequate assurances that the Safety Instrument Functions (SIFs) provide the required risk reduction throughout its lifecycle. The purpose of the PT is to detect dangerous undetected failures (UDFs) that cannot be detected by diagnostics. However, it is recognized that not all failures can be detected by diagnostics or PT and will only be identified either at equipment overhaul or when a demand is placed on the SIF.

The fraction of failures detected by the proof test is referred to as the Proof Test Coverage Factor (PTC).

This paper shall define proof test coverage, identify areas of consideration as to what can impact the PTC, propose methods for determining the PTC for greenfield and legacy equipment, how the PTC can impact the average probability of failure on demand (PFDAVG). This paper shall conclude that the impact of imperfect proof testing probability of failure on demand (PFDAVG). This paper shall define proof test coverage, identify areas of consideration as to what can impact the PTC, propose methods for determining the PTC for greenfield and legacy equipment, how the PTC can impact the average probability of failure on demand (PFDAVG). This paper shall conclude that the impact of imperfect proof testing can have a significant impact on the designed risk reduction requirements and the suitability of the defined proof testing method when the PTC is not considered. Therefore, a theoretical and pragmatic approach should be adopted considering the prescribed proof testing methods in the safety manual and its predefined PTC for the selected operation mode.

Consideration should also be given to the persons’ responsible for writing and conducting the proof testing and their ongoing relevant competency requirements.

Keywords: Functional safety, IEC 61511:2016, Proof test coverage.

Session: [TU1E]—Human Factors and Human Reliability
Day/Date/Time: Tuesday, 21 Sep. 2021/08:30–10:10 hrs
Venue: Amphi Jardin

TU1E: 335

09:50 hrs
Safemode’s Approach for Incorporating Human Factors into Risk-informed Design
Clementina Ramirez-Marengo1,2, Marta Libiet Lobet Lopez2, Beatriz Navas De Maya1,2, Evangelia Giagloglou3,4, Andrew Kilner5,6, Rafet Emek Kurt1,4, Osman Turan1,4,

Barry Kirwan5,6 and Simone Pozzi7
1Department of Naval Architecture, Ocean and Marine Engineering, University of Strathclyde, 100 Montrose St, Glasgow, G4 0LE, United Kingdom.
E-mail: clementina.ramirez@strath.ac.uk,
2Beatriz.navas-de-maya@strath.ac.uk, 3Evangelia.giagloglou@strath.ac.uk,
4Ostem.kurt@strath.ac.uk,
5EURCONTROL Experimental Centre, Centre du Bois des Bordes CS 41015, 89222 Berthigny-sur-Orge, France.
E-mail: 1mart.a.libiet@eurocontrol.int,
6andrew.kilner@eurocontrol.int, 7barry.kirwan@eurocontrol.int
8Deep Blue, Piazza Buenos Aires 20, 00198, Rome, Italy.
E-mail: simone.pozzi@deepblue.it

Safety operators play a key role in the safe and successful conduct of maritime and aviation transport operations. Human error is often reported as a contributor to maritime and aviation accidents. Therefore, the implementation of human-informed design considerations is essential to improve safety and operational performance in both sectors, especially in the maritime sector, where there is a lack of an established framework to systematically consider human factors at the design stage. Therefore, the SAFEMODE project brings together key experts from both aviation and maritime sectors to address this important gap.

The SAFEMODE project aims to deliver a framework that includes human factors considerations and enables designers to make risk-informed decisions.

The methodological approach of SAFEMODE builds upon four areas: the collection and analysis of accident data; the development of a toolkit for human performance assurance, the development of Human Factors-based risk models and the creation of a framework to support risk-informed design. The type of safety events considered in SAFEMODE for both domains includes collision and grounding for the maritime sector, and runway collision, taxiway collision and wake vortex during en-route flight phase for the aviation sector. This paper will provide an insight into the efforts conducted as part of the SAFEMODE project to assess the human contribution to risk and the benefits of applying these models to support risk-informed decisions in design and operations.

Keywords: Human factors, Safety, Risk assessment, Design, Maritime, Aviation.

TU1E: 404

08:50 hrs
Estimating Human Error Probabilities From Performance Measures: Demonstration Via Bayesian Belief Networks
Luca Podolliini1 and Vinh N. Dang2
Laboratory for Energy Systems Analysis, Risk and Human Reliability Group Paul Scherrer Institute Forschungstatore 111 Villigen PSI, Switzerland.
E-mail: 1luca.podolliini@psi.ch, 2vinh.dang@psi.ch
In state-of-the-art Human Reliability Analysis (HRA), the analysis of operator (or more generally of personnel) tasks is scenario- and plant-specific, informed by the plant design, thermo-hydraulic analyses, procedural guidance, and so forth. Observations of crew performance in simulators also inform a plant-specific HRA, for instance, on the timing of operator actions, on the critical decision points and emerging failure modes. Yet, actual performance evidence from simulator (e.g. number of successes, failures, response difficulties) is not used, mostly because very few failures are observed in the highly reliable operator performance.

At the Paul Scherrer Institute, the Risk and Human Reliability Group is investigating methods to incorporate plant-specific performance evidence into the plant’s HRA. The idea is to go beyond failure counts and adopt performance measures such as crew situation awareness and task performance measures e.g. from ref 1. In this paper, the concept is implemented via a Bayesian Belief Network. Numerical examples demonstrate how incorporation of performance measures allows informing the HEP on performance measures, going beyond the simple counting of (rare) failures (and even in case of no failures observed). In the demonstration, the model addresses a single performance measure (Lack of Situation Awareness): future work will extend to the multiple performance dimensions. A foundational assumption of the model is that a relationship exists between the HEP and the performance measure. In particular, a linear relationship is assumed between the logarithmic of the HEP and the measure, with some noise to represent uncertainties. Another future challenge will be to calibrate the relationship.

Keywords: Human reliability analysis, Simulator data, Control room simulators, Human error probability, Performance measure, Bayesian belief network.

A Metamodel Extension to Capture Post Normal Accidents in AR-equipped Socio-technical Systems
Soheila Sheikh Bahaei1 and Barbara Gallina2
School of Innovation, Design and Engineering, Mälardalen University, Sweden.
E-mail: 1soheila.sheikhbahaei@mdh.se, 2barbara.gallina@mdh.se

In the past twenty to thirty years, organizations have extremely changed and these changes in addition to technological changes such as use of augmented reality (AR) introduce new system risks. Post normal accidents theory describes that organizations are more globalized and digitized and are formed as networks of organizations, which would lead to post normal accidents such as network failure accident. In addition, it states that strategies and organizational structures are more financialized and networked respectively and technology and task are more digitalized and standardized. These organizational factors affect also on human performance. Organization and human are considered as the socio parts of socio-technical systems. Meta-models should provide the modeling elements required for modeling human and organizational factors in new AR-equipped socio-technical systems. Current metamodels do not consider factors that would lead to post normal accidents. In this paper, we elaborate the theory of post normal accidents and we extract the influencing factors leading to post normal accidents. We also consider global distance including geographical, temporal and cultural distances, as an influencing factor on human performance. Then, we use the extracted influencing factors for extending modeling elements in our previously proposed conceptual meta-model for modeling AR-equipped socio-technical systems.
Our proposed extended metamodel can be used by analysts in the energy and environmental domains in order to perform risk assessment for AR-equipped socio-technical systems.

Keywords: Socio-technical systems, Augmented reality, Post normal accidents, Conceptual metamodel, Risk assessment, Network failure accidents.

Evaluating Electroencephalogram Channels using Machine Learning Models for Drowsiness Detection

Plínio Marcio da Silva Ramos1, Caio Bezerra Souto Maior2, Márcio José das Chagas Moura3 and Isis Didier Lins4

CEERMA – Center for Risk Analysis, Reliability and Environmental Modeling, Federal University of Pernambuco, Recife-PE, Brazil and Department of Production Engineering, Federal University of Pernambuco, Recife-PE, Brazil. E-mail: plinio.ramos@outlook.com, caiomaior@ceerma.org, marciodiaschagas@ceerma.org, isis.lins@ceerma.org

The oil and gas (O&G) industry has suffered several catastrophic accidents over the years, and many of which are attributed to human factors. Indeed, human operators continue to play a central role in performing complex tasks in which cognitive functions influence their performance, especially in emergency situations. However, operators may not effectively respond when presenting tiredness, such as mental fatigue and/or drowsiness. Therefore, the development of a drowsiness detection system is desirable for industries dealing with safety-critical tasks, such as control rooms in O&G context. In this paper, we analyzed two electroencephalogram (EEG) channels: Fz and Pz. The data are processed based on distinct time-domain signal representation, analyzed through four well-known Machine Learning (ML) classification techniques in order to identify patterns related to drowsiness in different subjects submitted to monotonous tasks. We perform all analysis and comparisons considering a real and public database for human drowsiness. For most of the subjects analyzed, the ML models achieved a balanced accuracy (BA) greater than 95% when considering information of a single channel, which makes the drowsiness detection system less invasive, and then opens the possibility of using it in an actual environment.

Keywords: Human reliability, Drowsiness, EEG, DROZY, Machine learning, Classification techniques, Oil and gas industry.

Internet of Underwater Things to Monitor Offshore Wind Turbines Fields

Fekher Khelifi1, Benoît Parrein2,3, Jean-Marc Rousset2, Hervé de Forges2 and Thierry Grousset3,4

1LS2N LIMR CNRS, University of Nantes (Polytech Nantes), France. E-mail: 1fekher.khelifi@polytech.univ-nantes.fr
2LHEEA UMR CNRS, Centrale Nantes, France. E-mail: 2jean-marc.rousset@centrale-nantes.fr
3Kopadia SAS, 1 Bd Jean Moulin, Nantes, France. E-mail: 3thierry.grousset@kopadia.com

Internet of Underwater Things (IoUT) has gained large popularity. The real-time supervision requirement of both ecosystems and offshore infrastructures explains this world-wide interest. Large offshore wind projects are now launched off the French coasts and among them, the first farm will be installed by 2023 offshore St Nazaire harbour, providing an opportunity to establish an IoUT in an industrial environment. The paper is presenting some preliminary results of the Blue IoT – Eolia project which has the objectives to design and to test an underwater acoustic network dedicated to the supervision of subsea infrastructures and environmental parameters needed to ensure safety and reliability of wind turbines. Typical sensors (force and pressure sensors, inclinometers, thermometers, etc.) and different acoustic modems are tested to illustrate the capacities of such underwater networks to accommodate various parameters. Strategies to avoid collisions in the different acoustic channels are developed using a Medium Access Control (MAC) layer, some results and analyses being presented in the paper. Finally, a first experimentation in a natural environment conducted during summer 2021 (in the river Erdre at Nantes, France) will be detailed, illustrated and compared with the literature. A demonstration under-water network is expected to be installed during 2022 in real conditions on SEM-REV, the marine renewable multi-technology field test site of Centrale Nantes, located offshore Le Croisic (France).

Keywords: Offshore floating wind turbines field, Internet of Underwater Things (IoUT), Acoustic channels, Network protocols, System reliability, Renewable energy industry.
A Model-Based Approach for Structural Health Monitoring of Wind Energy Assets

Caleyron Fabien1, Delbos Frederic2, Leroy Jean-Marc1, Hivreas Adrien1, Munoz Zuniga Miguel1, Carsad Nicolas2, Le Bourdat Colin2, Allon Lucas3, Prieur Clementine1 and Arnaud Elise4

1IFP Energies nouvelles, 1-4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France.
2ENGIE Digital, 19 Rue de Lombard, 75002 Paris, France.
3ENGIE Green, Le Triade II, 215 rue Samuel Morse, 34967 Montpellier, France.
4Laboratoire J. Kuntzmann, 700 Avenue Centrale, 38401 Saint-Martin-d’Hères, France.

This paper presents a model-based approach to monitor loads in wind turbine components. The workflow presented on Figure 1 is composed of an offline training phase and a diagnosis phase and is fed with data from SCADA and possibly from sensors time series. Different tools dedicated to the approach will be presented:

- Surrogate modeling from dynamic simulations in order to link available input data (typically 10 min SCADA statistics, sensors time series) to required outputs (fatigue or extreme loads). These surrogate models are used in the diagnosis phase in order to evaluate the loading in the required component.
- Sensors time series condensation in order to generate scalar features to be used as inputs of the workflow. These features are used to extract relevant information from time series typically to characterize stochastic loading from wind and waves.
- Data assimilation with an ensemble Kalman filter for performing parameter estimation. Data assimilation can be used to characterize uncertain parameters related to the structure (static or quasi-static behavior) or to the loading (dynamical behavior).

Different applications will be presented such as fatigue loads estimation at wind turbines blades root validated with on-site measures and structural and environmental parameters estimation performed with a data assimilation approach.

Keywords: Structural health monitoring, Surrogate modeling, Data assimilation, Digital twin.

Incorporating Reliability Assessment in the Design Development & Optimization Of Floating Structures

Mareike Leimeister

Group Global Turbine Dynamics, Fraunhofer Institute for Wind Energy Systems IWES, Bremerhaven, Germany.
E-mail: mareike.leimeister@iwes.fraunhofer.de

Offshore wind turbines are exposed to fluctuating environmental loads and have to deal with aerohydro-servo-elastic coupled dynamics. Such complex engineering systems need thorough design processes, as well as sophisticated monitoring and maintenance approaches. The current development trend towards floating support structures for offshore wind turbines makes maintenance and repair work more difficult. This is, on the one hand, as access to a framework, programmed in Python, for automated simulation and optimization.

For reliability assessment of highly complex engineering systems, the combination of different techniques – building on approaches for creating approximate system representations and subsequent reliability analysis and calculation methods – is most promising. The development and assessment of floating wind turbine systems, however, also requires numerical modeling to correctly represent and simulate the fully coupled dynamics. The Modelling Library for Wind Turbines MoWiT (www.mowit.info), developed at Fraunhofer Institute for Wind Energy Systems IWES, allows for component-based modeling and can be coupled to a framework, programmed in Python, for automated simulation and optimization. To incorporate the computationally intensive reliability assessment within the highly iterative optimization process, a methodology is developed, by which means approximate models in form of response surfaces for a few potential system geometries out of the entire optimization design space are created ahead of the optimization. Consequently, corresponding response surfaces for any other system designs are derived based on an interpolation approach, and, finally, the reliability is determined sufficiently within the optimization procedure, using Monte-Carlo simulation. This methodology is applied to a floating wind turbine to obtain a reliability-based optimized support structure, accounting for uncertainties in environmental conditions directly within the design development and ensuring that the structure, including the mooring lines, fulfills certain reliability constraints. Furthermore, the numerical framework allows developing digital twins by optimizing the numerical model based on measurements. Such dig-
A New Methodology For Fast Lifespan Prediction Of Offshore Structures

Blerisot Gaëtan¹,², Girard Sylvain¹, Heurtier Jean-Michel³ and Yalamas Thierry²
1 PHIMECA Engineering, Centre des études du Zénith, 34 rue de Satillieu, F-63800 Clermont-Ferrand, France. E-mail: blerisot@phimeca.com
2 PRINCIPIA, Zone ATHÉLIA 1, 215 rue Arise 13600 LA Ciotat, FRANCE. E-mail: jean-michel.heurtier@principia.fr
3 PHIMECA Engineering, Centre d’Affaires du Zénith, 34 rue de Satillieu, F-63800 Clermont-Ferrand, France. E-mail: blondet@phimeca.com

Offshore structures monitoring meets crucial economic and environmental issues. Simulations are performed to estimate the behavior of offshore structures. However, simulations are based on assumptions on operating conditions, which are not always sufficient to take into account all the complexity of the real time-dependent environment and structural properties. Efficient monitoring and maintenance operations relies on data gathered from sensors, which provides real conditions and behavior of the structure. Simulations may be too expensive and time-consuming to estimate the updated lifespan from large dataset of measurements.

To address these issues, Phimeca and Principia had developed a methodology based on measurements to obtain rapid and updated prediction of the structure’s lifespan.

This methodology was successfully applied to the monitoring of a riser of a FPSO (Floating Production Storage and Offloading). First, the episodes of motion measured on the FPSO for 2 years were used to simulate the damage of the riser. The time series describing these episodes were transformed, by applying a combination of machine learning methods, so that the problem dimension was drastically reduced: with initially thousands of variables, only two explain the simulated damage efficiently. Finally, an emulator (metamodel), has been trained and validated to be numerically light enough to be embedded into the FPSO and to estimate the lifespan of the structure during its life. The dimension reduction makes the emulator numerically light enough to be embedded into the structure and to be compatible with constrained systems.

This methodology enables offshore structure owners and operators to obtain a fast updated lifespan prediction from an embedded light software, without any delay due to complex simulations. Thus, decision can be made faster to ensure structural and environmental safety in case of a dangerous event.

Keywords: Floating structures, Offshore wind turbines, Reliability-based design optimization, Monte-Carlo simulation, Uncertainty modeling, Digital twin, Complex engineering systems.

Berthing Criteria for Wind Turbine Crew Transfer Vessel with Low or High Friction Fender

Laurent Barthélémy
Ecole Nationale Supérieure Maritime, Nantes 44303, France. E-mail: laurent.barthelemy@eole maritime.fr

Boat access against a boat landing is realized by means of fenders made of rubber. Depending on their stiffness, the behaviour of the boat with the waves will be different. The works performed use the following methodology:

1. Calculate the efforts of a monochromatic wave applied against the boat in the case she can heave (low friction) or not (high friction).
2. Calculate the fender friction coefficient against the boat landing.
3. Compare the berthing criteria with those from another publication.
4. Compare the berthing criteria for a low or high friction fender.

The following results are found for a 27m catamaran: low (high) friction fender berthing is possible for 1.5m (0.5m) Hs, or for 2m Hs with small wave periods.

Keywords: Operation and maintenance, Crew transfer vessel, Offshore wind turbine, Significant wave height, Wave period.

Probabilistic Modeling in a Bayesian Framework of Nuclear Containment Buildings Structural Tightness

Donatien Rossat¹,², Julien Baroth¹, Frédéric Dutour¹, Matthieu Briffaut¹, Alexandre Montelli², Benoît Masson² and Sylvie Michel-Ponnelle³
¹ Université Grenoble Alpes, CNRS, Grenoble INP, 38, Grenoble, France. E-mail: donatien.rossat@univ-grenoble-alpes.fr
² Electricité de France (EDF/DSPN/FTR), Lyon, France
³ Electricité de France (EDF/R&D/ERMES), Palaisseau, France

Structural tightness constitutes one of the main function of French 1300-1450 MW e nuclear power plant reactor build-
ings, which is provided by a reinforced and prestressed concrete inner wall without steel liner, and an outer wall ensuring protection against external effects. Tightness is evaluated through the measurement of the inner wall leakage rate during periodic pressurization tests. The leakage rate should not exceed a regulatory threshold value. Under several physical processes related to concrete ageing and operating loads, structural tightness may evolve during the operational phases. In this context, the development of a numerical methodology aiming at assessing the time evolution of the containment buildings tightness will contribute to an improved anticipation of potential repair works, as well as decision aid in the framework of containment structures maintenance.

In recent years, many studies have been performed in order to provide physical modeling approaches of the thermo-hydro-mechanical and leakage (THML) behaviour of concrete in large containment structures. These approaches involve numerous uncertain parameters. However, in-situ observations of the structure’s response are available in significant quantity. Thus, they allow an inverse uncertainty quantification in a Bayesian framework. It combines a prior state of knowledge and noisy observations of the system response, in order to derive an a posteriori state of knowledge which summarizes available information at a given moment of the structure life. In this context, a Bayesian probabilistic modeling strategy is proposed, aiming at assessing the structural tightness of containment buildings, based on a physical THML modeling strategy. The forecasts of mechanical and leakage responses are sequentially, using Markov Chain Monte Carlo algorithms. In order to accelerate these algorithms, sparse polynomial chaos expansions surrogate models are built. The risk of exceeding regulatory leakage rate thresholds is then assessed in a reliability-based framework. The proposed approach enables to deal with a complex physical model with numerous uncertain parameters, and several types of in-situ observation data with varying quantity and measurement noise. Application results regarding a 1:3 scale nuclear containment building mock-up show accurate leakage forecasts with a significant reduction of uncertainties throughout the structure’s operational phase.

Keywords: Bayesian inverse problems, Nuclear containment buildings, Structural tightness, polynomial chaos expansions, Markov chain monte carlo, Stochastic finite elements, Thermo-hydro-mechanical modeling.

Risk Assessment Based on Event Tree for Loss of Cooling Accident at a vSMR

Nathália Nunes Araújo, Maritza Rodríguez Gual, Hugo da Costa Romberg Júnior, Marcos Coelho Maturana and Marcelo Ramos Martins

Analysis, Evaluation and Risk Management Laboratory (LabRisco), Polytechnic School of the University of São Paulo, Brazil.

E-mail: nathalia.nunes@labrisco.usp.br, maritza.gual@labrisco.usp.br, hugo.romberg@labrisco.usp.br, marcos@labrisco.usp.br, marcelo@usp.br

Small modular reactors (SMR) are smaller than conventional reactors and are designed to produce up to 300 MWₑ. Very small modular reactors (vSMR) (about 10 to 50 MWₑ) are a type of SMR. These reactors can be manufactured and assembled at the factory and then transported to the place where they will be installed – which makes them cheaper and built faster. Plants equipped with this type of reactor can be used in water desalination, heat generation and energy production in remote locations. As with other nuclear installations, risk analysis is necessary to assist in the design and implementation of vSMR. The Level 2 Probabilistic Safety Assessments (PSA) of nuclear power plants (NPP) identify the pathways, magnitude and frequency of radionuclide release through containment during an accident. The end states of the event tree provide significant insights on accident prevention and mitigation, pointing to measures with great potential to improve the design and operation of an vSMR. This paper describes a model under development with Computer Aided Fault Tree Analysis System (CAFTA) to quantify the risk during a loss of coolant circulation accident in the spent fuel pool (SFP) of a generic pressurized water reactor (PWR) - type vSMR with a 45 MW the 10 MWₑ in Low Power and Shutdown (LPS) operating mode, as part of a Level 2 PSA.

Keywords: Probabilistic safety assessments, Small modular reactors, Fault tree, Event tree analysis, PSA.
Operational Safety Analysis of HANARO Research Reactor using STAMP/STPA
Sang Hun Lee1,a, Sung Min Shin1,b, Jinkyun Park1,c and Jeong Sik Hwang2
1Risk Assessment and Management Research Team, Korea Atomic Energy Research Institute, 111 Daedeok-daero, 989 beon-gil, Yuseong-gu, Daejeon, Republic of Korea. E-mail: alee@kaeri.re.kr, bsmshin@kaeri.re.kr, ckshpjk@kaeri.re.kr
2HANARO Management Division, Korea Atomic Energy Research Institute, 111 Daedeok-daero, 989 beon-gil, Yuseong-gu, Daejeon, Republic of Korea. E-mail: hjs@kaeri.re.kr

The operational policy of nuclear facilities including commercial nuclear power plants and research reactors established and practiced by the utility is required to give safety the utmost priority, overriding the demands of production and project schedules. To date, the probabilistic safety assessment (PSA) has been used as one of the standard tools for the safety evaluation; however, concerns have been raised about its capability to treat the complex interaction between human operators, digital systems, and diverse plant processes. This paper proposes an operational safety analysis procedure based on system theoretic accident model and process/systems-theoretic process analysis (STAMP/STPA). The effectiveness of the proposed procedure is demonstrated with the case study of a cold neutron source system installed in High-Flux Advanced Neutron Application Reactor (HANARO). In result, 127 unsafe control actions (UCAs) were derived for 51 control actions regarding spurious trip scenario. The UCAs were reviewed by the HANARO operators and found new scenarios that requires further investigation for reducing the possibility of a spurious trip. The proposed procedure is expected to provide an integrated viewpoint for operational safety analysis and further used to suggest recommendations for the safety enhancement of nuclear facilities.

Keywords: Operational safety analysis, STAMP/STPA, Unsafe control action.

Evaluation of Risk Dilution Effects in Dynamic Probabilistic Risk Assessment of Nuclear Power Plants
Kotaro Kubo1 and Yoichi Tanaka2
1Japan Atomic Energy Agency, Japan. E-mail: 1kubo.kotaro@jaea.go.jp, 2tanaka.yoichi@jaea.go.jp

Probabilistic risk assessment (PRA) is a method of effectively evaluating risks in nuclear power plants and is used in various agencies. Dynamic PRA is attracting considerable attention, as it enables realistic assessment by reducing the assumptions and engineering judgments related to time-dependent failure probability and/or human action reliability. However, it is difficult to remove all assumptions and engineering judgments. Therefore, their effects on assessment results should be understood. This study focuses on the “risk dilution effect,” which arises from assumptions about uncertainty. Results showed that this effect causes a difference of about 10% to 20% in the relative change of the conditional core damage probability in the station blackout scenario. This effect should be fully considered when using dynamic PRA in critical decision-making, such as that on regulations.

Keywords: Probabilistic risk assessment, Dynamic PRA, Nuclear power plant, Risk dilution.

Multi-Step Prediction Algorithm for Critical Safety Parameters at Nuclear Power Plants Using BiLSTM and AM
Hyojin Kim1 and Jonghyun Kim2
Department of Nuclear Engineering, Chosun University, 309 Pilman-daero, Dong-gu, Gwangju 501-709, Republic of Korea. E-mail: 1kim0514@chosun.ac.kr, 2jhyunjkim@chosun.ac.kr

In abnormal or emergency situations at nuclear power plants (NPPs), operators are expected to recognize the situations and sometimes take effective safety measures quickly. Under these situations, the appropriate situation awareness affects the effective mitigation of events. Especially, Level 3 Situation Awareness, i.e., the prediction of future plant behavior, is critical, but one of the most difficult tasks to the operators. In order to help the operators’ situation awareness, some studies have proposed prediction algorithms using artificial intelligence techniques. However, those methods were focused on the single-step prediction so that they could not perform long-term prediction. Multistep prediction is known to be difficult and challenging because of the lack of information and uncertainty or error accumulation. In this light, this study suggests an algorithm using a sequence-to-sequence network that combines
The SEMP (systems engineering management plan) is a management program that controls the entire product development process by managing the entire manufacturing process. The development risk of existing aerospace products is highly related to its complexity and maturity, which are mainly reflected in requirements demonstration, design analysis and test verification, and establishes a management and control method for quality characteristics of aerospace product development, such as reliability. It can help product development enterprises to manage and control their product development process more comprehensively, so as to reduce the risk of product development, which is of great significance to improve the overall quality of aviation products and reduce the risk of development. This method can also provide a new idea for the development and control of aviation products in the future, which is helpful to avoid risks and improve the quality of aviation products.

Keywords: SEMP, Evaluation, Process control, Management, Reliability, Quality.

TU1H: 466 08:30 hrs

AUTOSAFE: Automatic Fault Tree Synthesis for Cyber-Physical Systems
Muktaear Wumaieri
Matthias Brunner
Bradley Sams
Robert Muirhead
Björn Annighöfer
Stuart Baskcomb

1 Delta System Solutions GmbH, Rathausstr. 6, 81247, München, Germany. E-mail: Muktaear.Wumaieri@deltasystem-solutions.com, robert.muirhead@deltasystem-solutions.com, stuart.baskcomb@deltasystem-solutions.com
2 Institute of Aircraft Systems, University of Stuttgart, Pfaffenwaldring 27, 70569, Stuttgart, Germany. E-mail: matthias.brunner@ils.uni-stuttgart.de, robert.muirhead@ils.uni-stuttgart.de

Safety analysis is a key pillar of compliance demonstration for aircraft and other complex cyber-physical systems with the safety requirements of the certification authorities. Fault tree analysis is a well-established and accepted methodology for this purpose. However, with the growing complexity of systems, consisting of software and complex electronic hardware and their inter-dependencies, it is becoming increasingly challenging and costly to manually conduct fault tree analysis. It is not only time consuming and error prone but also the quality (e.g., consistency and correctness) of the analysis is highly dependent on the ability of the individual Engineer. In order to address this issue, a software tool AUTOSAFE is being developed to automate the fault tree generation process.

In AUTOSAFE, a domain-specific model is used to model system hardware structure and functions, as well as the failure propagation. An algorithm is developed to automatically generate fault trees. Key issues for the trustworthiness of generated fault-trees are completeness and understandability. Completeness is addressed with semi-automated inclusion of external events from an external events database into the automatically generated fault tree. Understandability is addressed with a novel requirements model and rigid naming conventions that are automatically considered during fault tree generation. In addition, a web-based tool architecture provides multiuser modeling. AUTOSAFE will not only decrease the time required to develop fault trees but also improve their consistency and correctness.

In this paper, the concept and methods of the AUTOSAFE tool are introduced. Additionally, the workflow of system modelling, failure propagation modelling, and auto-generation of the fault tree are demonstrated with an exemplary system study.
A Machine Learning Approach to Assess Runway Conditions Using Weather Data
Alise Danielle Midtfjord and Arne Bang Huseby
Department of Mathematics, University of Oslo, Norway.
E-mail: alisedm@math.uio.no, arne@math.uio.no

Contamination of runway surfaces with snow, ice, or slush causes potential economic and safety threats for the aviation industry during winter season. The presence of these materials reduces the available tire-pavement friction needed for retardation and directional control. To activate appropriate safety procedures, pilots need accurate and timely information on the actual runway surface conditions. Previous research on how available runway friction is affected by weather conditions and runway contamination has mainly been reduced to engineering- or physics-based models. The complexity of the physical relationships controlling the surface friction and their dependency on each other makes this a difficult task. Machine learning methods have in several occasions shown to be able to model complex physical phenomena with a good accuracy, when domain knowledge is included. In this paper, we build a model using the state-of-the-art boosting algorithm XGBoost, to predict runway conditions using weather data and runway reports. The model is trained to predict the runway surface conditions represented by the tire-pavement friction coefficient. Our model is compared to a currently in-use system at several Norwegian Airports, which is a scenario-based model created based on meteorological and runway knowledge.

Keywords: Aviation risk assessment, Machine learning, Runway friction, Scenario models, Weather data, Flight data, XGBoost.

A Data-Driven Method of Predicting Hard Landing Based on RFECV and XGBoost
Xinpeng Ji, Wenbing Chang, Pan Li, Yue Zhang, Houxiang Liu, Bang Chen, Yiyong Xiao and Shenghan Zhou
School of Reliability and Systems Engineering, Beihang University, Beijing, China.
E-mail: sy1914103@buaa.edu.cn, changwenbing@buaa.edu.cn, pandali@buaa.edu.cn, Zhangyue1127@buaa.edu.cn, sy1914125@buaa.edu.cn, bang@buaa.edu.cn, xiaoyiyong@buaa.edu.cn, zhoush@buaa.edu.cn

Aircraft hard landing means that the impact load of the landing gear on the ground exceeds the specified limit at the moment of landing. As a common flight accident, hard landing poses a huge threat to flight safety. The mass production and storage of flight data is also a challenge to the existing analysis methods. In this study, we took the flight parameter data during the landing process of the aircraft as the research object, and established a hard landing prediction model based on historical data and machine learning. First, we established a flight parameter selection method combining data cleaning and recursive feature elimination with cross validation (RFECV), aiming to identify the key parameters that affect the flight landing state and quantify parameter importance. Second, we build a hard landing prediction model based on the ensemble learning method XGBoost. The results of the evaluation metrics shows that the method proposed in this study can effectively predict the aircraft hard landing to realize safety warning. The trained model can be used in flight practice. When the key parameters of the aircraft are input, the model can assist the pilot to adjust the aircraft attitude, and prevent the occurrence of a hard landing.

Keywords: Hard landing, Machine learning, Risk prediction method, Data mining, RFECV, XGBoost, SHAP.

How to Enhance Safety Culture and Safety Management at Airports – The Safety Culture Stack
Tom Reader and Barry Kirwan
Safety culture relates to how an organization values and prioritizes safety: for example, in terms of shared norms about the importance of safety, management commitment to safety, and systems for ensuring organizations capture and learn from incidents. Research in aviation has tended to focus on the norms and values within specific industry sectors: for example airlines, air traffic control, and airports. Yet, a systems-approach to safety management recognizes that safety is often a product of interactions between the
different organizations that need to collaborate in order to deliver a service. For aviation, this means that the safety culture of different organizations within the aviation system should not be studied in isolation: rather an approach should be taken where organizations are considered synchronously. This is most obviously the case at an airport, where many key players - the airport authority, airlines, air traffic services and ground handling services - must interact. At a regional airport this may entail fifty or so companies who must collaborate to ensure safe and efficient operations. At a larger international airport it can easily be two hundred and fifty organisations. Surveying every single organization’s safety culture independently would be an arduous and possibly never-ending task, and would miss the essential interactions and safety interfaces where the roots of accidents and resilience are often found. A more integrative, encompassing, and yet agile approach is needed.

In 2016, utilizing the validated EUROCONTROL safety culture methodology used to measure safety culture in air traffic management, an adapted version of the safety culture survey was distributed across airlines (cabin crew, pilots, support staff), air traffic control (air traffic controllers, engineers, support staff), airport staff, ground handling companies, and other key participants (e.g., emergency services) at one of London’s regional airports (London Luton Airport). Focus groups with staff and management from the whole spectrum of airport activities were also used to dive deeper into the issues raised by the survey, leading to an Action Plan for improving the safety culture of the airport as a whole. A number of these actions aimed to help certain airport companies learn from others who exhibited best practices in key areas such as Just Culture, Reporting and Learning, etc. The Luton Safety Stack, as it has become known, has seen a transformation in ‘the way safety is done’ at the airport, with competitive companies (e.g. ground handling services) working together for safety, each company, no matter how small, now feeling it has a ‘voice’ in safety discussions, and implementation of a Just Culture Framework that encompasses more than seventy organisations (e.g. ground handling services) working together for safety, each company, no matter how small, now feeling it has a ‘voice’ in safety discussions, and implementation of a Just Culture Framework that encompasses more than seventy organisations at the airport. What started out as a safety culture initiative has also changed a number of safety management processes related to incident management and risk reduction, as well as collaborative use of safety-related equipment and resources, and harmonized procedures across the airport for all ground handling activities.

The Safety Stack process has been applied successfully to a second UK airport, and is scheduled for application to two international airports in 2021. The paper will focus on how the Stack is formed, how it works, and the tangible benefits seen so far at the two airports who now have an operational Safety Stack.
Markov chains are one of the modeling formalisms used in reliability engineering. Even if it is powerful, from a mathematical point of view, one of its big issues is the design of models for large scale systems. In fact, designing a Markov chain of a system with several components, each one may be in several states, is an important amount of job. There are no structural constructs to efficiently design such a model (e.g., composition, synchronization, etc.). In this publication, we present how the AltaRica 3.0 modeling language can be used to design efficiently large continuous time Markov chains. We consider an example of a system composed of combinations of series-parallel components, combining different states for components and different modes for parts of the system. We show that the design of the model is very efficient thanks to the advanced structural constructs of the AltaRica 3.0 modeling language. Finally, we use assessment tools available for AltaRica 3.0, e.g., the stochastic simulator, to evaluate the model of the system.

Keywords: Markov chains, AltaRica 3.0, Model-Based safety assessment, Production system.
in SysML using the same profile) are propagated between blocks through ports defined by the system engineers, and the associated fault logic (including hardware generated base events) is modeled in standard internal block definition diagrams. Functional failures represent only part of the failure model (which will always include events and scenarios outside the functional requirements), but it ensures that for functional deviations at least, fault logic models follow the functional hierarchy and use the same design blocks as the system engineers. It means that specification changes to functional blocks or ports can be picked up and flagged to the safety team as requiring inspection, and it enables direct traceability within the SysML repository of derived safety requirements from the PSSA / FHA through to the fault logic used to demonstrate acceptable mitigation of risk. We demonstrate the new profile’s use in the context of a gas turbine control system design, and discuss the advantages and shortfalls it provides in an industrial setting.

Keywords: SysML, Fault logic, Fault trees, Safety analysis, MBSE, MBSA.

Session [TU1J]—Natural Hazards
Day/Date/Time Tuesday, 21 Sep. 2021/08:30–10:10 hrs
Venue Botanique 2

TU1J: 048 08:30 hrs

Exploring Sensitivity Analysis to Support Urban Flood Risk Prioritization Under a Multidimensional Perspective
Lucas Borges Leal da Silva¹,², Marcelo Hazin Alencar¹,² and Adiel Teixeira de Almeida²
¹Research Group on Risk Assessment and Modeling in Environment, Assets, Safety, Operations and Nature (REASON), Universidade Federal de Pernambuco – Recife, Pernambuco, Brazil. E-mail: lucas.leal.luca@gmail.com, marcelohazin@gmail.com
²Center for Decision Systems and Information Development (CDSID), Universidade Federal de Pernambuco – Recife, Pernambuco, Brazil. E-mail: almeida@cdsid.org.br

Flood accident reports worldwide have demonstrated that many factors (such as climate change, and urbanization) act as catalysts that aggravate the many impacts of flooding on urban systems. Therefore, decision models should consider these complexities, in which a decision maker’s (DM) preferences deal with multiple criteria to plan adaptive measures and reduce damages from urban flooding and this should also include taking a long-term perspective. Given this context, sensitivity analysis (SA) is a useful tool that supports DMs by assuring them to what extent they can rely on the recommendations provided by quantitative models. This paper discusses a global SA based on a multidimensional decision model, which uses Multi-Attribute Utility Theory and Decision Analysis, to prioritize urban areas according to risks from flooding they face. The SA simulated three groups of parameters: (i) uncontrolled factors, i.e., the influence of climate effects on estimating rainfall patterns; (ii) urban population growth and its correlation to the consequences of floods; and (iii) the DM’s preferences, which means the compensatory relation among criteria. Statistical and graphic visualization tools evidence how robust the original risk ranking is according to how the parameters are set. The SA runs 100,000 replications which generate 14 different rankings. An in-depth analysis has shown that the original ordering of flood risks is reasonably robust, but some urban areas are sensitive mainly to climate change and urbanization. Furthermore, additional detailed discussion indicates how DMs can benefit from this analysis when implementing strategic decisions on preventing floods and mitigating their impacts.

Keywords: Urban flood, Multidimensional risk, MAUT, Decision analysis, Sensitivity analysis, Monte Carlo simulation.

TU1J: 161 08:50 hrs

U.S. National Risk Index-A Foundational Review
Seth Guikema¹ and Roger Flage²
¹University of Michigan, 500 S State St, Ann Arbor, MI 48109, United States. E-mail: sguikema@umich.edu
²University of Stavanger, Kjell Arholms gate 41, 4021 Stavanger, Norway. E-mail: roger.flage@uis.no

The U.S. recently created the National Risk Index, a tool intended to provide a nation-wide assessment of natural risks. This method provides county and census tract level estimates of economic losses, a measure of social vulnerability, and a measure of community resilience. These three measures are then combined as a “risk” estimate. This paper provides a critical perspective on the National Risk Index reviewing in three area:

(1) the conceptualization and definition of risk used,
(2) what is actually being measured, and
(3) how it is actually measuring those quantities.

We find that there is significant room for improvement in all three areas.
As extreme weather events become more frequent and world’s population is growing an increasing number of built areas and critical infrastructure networks are challenged by natural hazards like heavy rain, urban flooding or landslides. At the same time, the quantity and quality of remote sensing data delivering earth observation products is continuously increasing and widely accessible. With the help of high-resolution, open access data and fast engineering approaches new options arise to investigate objects at the hands of high-speed dynamics, Ernst-Mach-Institut, EMI, Am Klingelpfeil 1, 79588 Eggenstein-Lès-Beauvais, Germany.

The physics mechanisms of rainwater ingress, distribution and propagation provide the basis for a probabilistic vulnerability model (MHR model). At the heart of the MHR model is a Monte Carlo simulation engine which runs simulations for combinations of wind speed and direction for a variety of building classes. Key parameters (component capacity, rainwater ingress, etc.) are treated as random variables. The resulting vulnerability and fragility curves and surfaces, when used in a catastrophe model, can lead to improved loss projections and facilitate the evaluation of the effectiveness of mitigation measures. The paper describes the model, and presents its vulnerability functions. It also describes its different variables with their uncertainty and discusses the overall uncertainty attached to the process.

Keywords: Probabilistic vulnerability model, Interior and contents damage, Mid/high-rise building. Uncertainty, Monte carlo simulation.
This paper discusses the Italian seismic risk assuming that the existing buildings portfolio is substituted by new code-conforming structures. The seismic risk is quantified, at municipality scale, via the evaluation of failure rate per building class. This requires: (i) the probability that the structures fail for a given ground motion intensity value, that is, the fragility functions and (ii) the hazard curves resulting from probabilistic seismic hazard analyses. The adopted fragility functions come from the Italian research project RINTC – Rischio Implicito delle Strutture progettate secondo le NTC, in which a large set of buildings was designed for three sites representative of different seismicity. Thus, the Italian municipalities were divided in three seismic classes and it was assumed that fragility functions from RINTC are representative of new design (residential) structures, according to a replacement criterion that was established to associate the structural typologies of the existing buildings to those considered in the project. The failure rates per building typology were computed first, combining the structural fragility functions and the computed hazard curves. Then, the failure rates were averaged over the building typologies and the percentages of soil conditions characterizing each municipality. The results, presented in the form of maps, show that the fragility of masonry structures have the main impact on the maps, which are also affected by the identification of the hazard and soil classes of the sites.

Keywords: Code-conforming structures, Building classes, Seismic failure rates, Fragility functions, Probabilistic seismic-hazard analysis.
Safety in Road Tunnels: Analysis of Fire Accident Location inside the Gran Sasso Tunnel in Italy

The aim of this research is to analyze the fire events occurred inside the Gran Sasso unidirectional highway tunnel in Italy. The Gran Sasso tunnel consists of two parallel one-way tubes with a length of about 10100 m. The tunnel, managed by Strada dei Parchi S.p.A., is one of the 14 tunnels belonging to the A24 and A25 motorways subject to the application of the European Directive 2004/54/EC. This Directive requires a Quantitative Risk Analysis (QRA) for tunnels belonging to the Trans-European Road Network and longer than 500 m. This study analyzed the fires and fire principles (which failed to develop into fire) that occurred in the left tube of Gran Sasso tunnel during the period 2007-2020, which consists of an uphill section of about 4500 m followed by a slightly downhill one. These events involved both light and heavy vehicles, their location along the tunnel and the possible causes were considered. Out of the 12 events analyzed (6 fires and 6 fire principles) it was observed that 11 events occurred in the uphill section while only one event occurred in the downhill section. The results of this study can be used for the implementation of risk analyses according to the European Directive but can also represent a useful tool for tunnel managers to evaluate the possible increase in the number and location of fire detection devices and/or fire suppression/control systems.

Keywords: Road tunnel, Tunnel safety, Tunnel accident rate, Tunnel fire, Quantitative Risk Analysis, Road accident, Risk, Safety, Vehicle fire, Tunnel operations.

Time to Failure Estimation of Cryogenic Liquefied Tanks Exposed to a Fire

The density of different gaseous fuels can be increased for storage and transportation purposes through the liquefaction process. The gases are converted to cryogenic fluids if liquefied by reducing their temperatures (e.g. for liquid hydrogen, LH2, and liquefied natural gas, LNG). Therefore, these cryogenic fuels must be stored in extremely well insulated tanks (double walled type with evacuated insulation). The ignition of an accidental fire in the vicinity of the cryogenic tank might cause the loss of integrity of the vessel. This event might lead to the catastrophic rupture of the vessel and provoke a major accident with many severe consequences. For this reason, the estimation of a potential time to failure (TTF) of the container in the worst-case scenario is critical.

In this study, an analytical model was developed based on well-known thermodynamic equations, to estimate the heat transfer between the cryogenic tank and the surrounding fire in the worst-case scenario. The thermal conductivity of the double walled tank insulation is one of the most complex and critical parameters to evaluate. Different uncertainties regarding the vessel insulation were highlighted in the manuscripts. The outcomes of this model were validated against experimental results. Additional experimental tests are necessary to thoroughly validate the model and understand the behavior of the cryogenic vessels when exposed to a fire. This type of tests will be conducted for LH2 during the Norwegian project SHB2F.

Keywords: Cryogenic fluids, Liquid hydrogen, Liquefied natural gas, Loss of integrity, Catastrophic rupture, Time to failure, Analytical model, Emergency responders, Explosion, BLEVE.
Experimental Validation of a CFD Gas Release Model in a Wind Tunnel

A. Piselli, R. Gerboni, G. Ledda, A. Moscatello, A. C. Uggenti and A. Carpignano
Department of Energy, Politecnico di Torino, Corso Duca degli Abruzzi 24, Italy.
E-mail: arianna.piselli@studenti.polito.it, raffaella.gerboni@polito.it, gianmario.ledda@polito.it, alberto.moscatello@polito.it, anna.uggenti@polito.it, andrea.carpignano@polito.it

This paper presents the experimental validation process of an innovative CFD approach, called SBAM (“Source Box Accidental Model”), developed in ANSYS Fluent and aimed at a more efficient characterisation of accidental high-pressure gas releases in congested environments (e.g. offshore Oil&Gas, nuclear plants).

In this work, the experimental setup, methodology and a preliminary CFD-experimental data comparison are described.

The campaign has been carried out in the SEASTAR-WT wind tunnel, realized at the Environment Park in Turin (Italy) and completed at the beginning of October 2020. This subsonic, open-cycle tunnel with a total installed power of approximately 100 kW allows a range of air speeds between 0 and ∼8 m/s in the test chamber. A 1:10 scaled Oil&Gas platform mockup, equipped with flow and gas sensors, was built and installed inside the wind tunnel, allowing to reproduce, through a custom scaling procedure, the conditions of dynamic similarity with the real cases. Preliminary tests were performed to calibrate the tunnel and be acquainted with sensors behaviour and accuracy. The core of the campaign has been devoted to a set of gas releases meant to validate the concentrations and velocities predicted by the CFD modelling.

For most of the case studies, first results have shown that normalised concentration profiles present a good consistency with CFD simulation results. New tests are ongoing to validate also absolute concentration values and improve the understanding of the physical phenomena in such a complex setup.

The activity has been funded by the Italian Ministry of Economic Development (MiSE) and carried out at the SEADOG laboratory of the Politecnico di Torino.

Keywords: Oil & Gas, CFD, ANSYS fluent, High-pressure gas, Experimental validation, Wind tunnel, Accidental release.

A STAMP-Game Model for Accident Analysis of an Oil Spill and Explosion Accident

Daiwei Li and Huixing Meng
State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, China.
E-mail: huixing.meng@bit.edu.cn, huixing.meng@hotmail.com

Accidents in oil and gas storage and transportation are generated by complex socio-technical factors. Conventional accident models regard the accident evolvement as event chains, which have limitations in analyzing systems with increasing complexity and coupling. Thus accidents in complex systems can be investigated from the viewpoint of system engineering. System-Theoretic Accident Model and Processes (STAMP) is widely used to provide insights into the accident causation and risk prevention. Simultaneously, game theory can be adopted in accident analysis to depict the competition and cooperation relationships between stakeholders. This is due to that the stakeholders in STAMP can be regarded as players in game. This paper provides a new perspective to analyze accidents in the storage and transportation of oil and gas by the integration of STAMP and game theory (i.e., STAMP-Game model), with a case study of the oil spill and explosion accident in Dalian, China on July 16, 2010. The STAMP analysis uncovered the in-depth accident causal factors. Based on STAMP results, game theory was applied to analyze roles that government and companies played in the Dalian accident. Our results demonstrate that the STAMP-Game model is feasible for the causal investigation, risk prevention, and control of accidents in the storage and transportation of oil and gas.

Keywords: Oil spill, Accident model, System engineering, STAMP, Game theory.
Critical Success Factors for Risk-Based Inspection of Corrosion-loop Pipelines

Ayanda Mokoena and Krige Visser
Department of Engineering and Technology Management, University of Pretoria, South Africa.
E-mail: ayanda.mokoena@sasol.com, krige.visser@up.ac.za

Petrochemical companies use equipment like vessels, reactors, furnaces, heat exchangers and pumps during the production of petroleum fuels, oil & gas, and other chemicals. Processing plants also use pipelines to transport the various process mediums within and outside the plant. Equipment that are used in plants are susceptible to deterioration due to a variety of damage mechanisms, depending on the fabrication materials, process mediums and process parameters. Risk-based inspection (RBI) is an engineering methodology or tool that determines and ranks the risk of failure associated with the operation of physical assets. This paper discusses the identification and ranking of the critical success factors (CSFs) for implementing RBI of corrosion-loops at a petrochemical facility in South Africa. Some 27 critical success factors for RBI were identified from literature. A questionnaire was developed and sent to RBI stakeholders, requesting respondents to rank the importance of 27 CSFs for a successful corrosion-loop RBI program. Some 231 completed questionnaires were returned by respondents. The most important CSF as ranked by the respondents was “Data collection” and the 2nd most important factor was “Record keeping”. Comparison of the CSFs of single equipment RBI and corrosion-loop RBI showed “Data collection” to be the most important factor in both RBI types. The results of this study are useful for maintenance and reliability engineers to assess the importance of success factors for the implementation of a pipeline corrosion-loop RBI.

Keywords: Critical success factors, Corrosion-loops, Risk-based inspection, Processing plant.

The plausibility concept has gained increasing attention in recent years in risk analysis settings. A number of definitions exist, some of which interpret plausibility as an expression of uncertainty, whereas other definitions relate the concept of plausibility to the quality of knowledge. The concept is frequently referred to in scenario analysis, as well as emerging risk and systemic risk contexts, which are characterized by large uncertainties. The difficulty of assigning probabilities in such cases has led some to claim that plausibility, by offering a purely qualitative approach, is a more suitable tool for measuring uncertainty. However, a proper clarification of what the plausibility concept means in a risk analysis context is missing. Furthermore, current definitions lack a clear distinction between the meaning of plausibility per se, and how it is measured. The present paper aims to rectify these issues by i) reviewing and discussing how the plausibility concept is interpreted and used in the literature, ii) providing a suggested interpretation of the concept in a risk analysis context, and iii) giving our recommendations on how the practical application of the concept can be enhanced by drawing on contemporary risk science, specifically with regards to highlighting the knowledge and surprise dimensions of risk.

Keywords: Uncertainty, Plausibility, Probability, Knowledge, Risk analysis.

In 2021, the COVID-19 pandemic continues to challenge the globalized world. Restrictions on public life and lockdowns of different characteristics define life in many countries. This paper focuses on the first year of the COVID-19 pandemic (01-28-2020 to 01-15-2021). As a transfer of methods used in reliability engineering for analyzing the occurrence of infection, Weibull distribution models are used to evaluate the spreading behavior of COVID-19.

Key issues of this study are the differences in spreading...
behavior in the first and second pandemic phase and the various impacts of lockdown measures with different characteristics (hard, light). Therefore, the occurrence of infection in normed time periods with and without lockdown measures are analyzed in detail on the example of Germany representing the spreading behavior in Europe. Additionally, the evaluation in comparison to classical infection analyzes models like the SIR model is generated by the application of Weibull distribution models with easily interpretable parameters and the dynamic development of COVID-19 is outlined.

In a further step, the occurrence of infection of COVID-19 is put into the context of other common infectious diseases in Germany like Influenza or Norovirus to evaluate the infectiousness. Differences in the spreading behavior of COVID-19 in comparison to these well-known infectious diseases are underlined for different pandemic phases.

Keywords: COVID-19 pandemic, Data analytics, Lockdown impact, Infection spreading behavior, Infectiousness, Influenza, Weibull distribution model.

TU2A: 395 11:25 hrs
COVID-19 Pandemic: Analyzing of Spreading Behavior, the Impact of Restrictions and Prevention Measures in Germany and Japan.
Stefan Bracke1, Alicia Puls1 and Masato Inoue2
1Chair of Reliability Engineering and Risk Analytics, University of Wuppertal, Germany.
E-mail: stefan.bracke@uni-wuppertal.de
2Department of Mechanical Engineering Informatics, Meiji University, Japan.

In December 2019, the world was confronted with the outbreak of the respiratory disease COVID-19. The COVID-19 epidemic evolved at the beginning of 2020 into a pandemic, which continues to this day. The incredible speed of the spread and the consequences of the infection had a worldwide impact on societies and health systems. Governments enforced many measures to control the COVID-19 pandemic. Restrictions (e.g. lockdown), medical care (e.g. intensive care) and medical prevention (e.g. hygiene concept) this leads to different spreading behavior of the COVID-19 pandemic, depending on measures. Furthermore, the spreading behavior is influenced by culture and geographical impacts. The spreading behavior of COVID-19 related to short time intervals can be described by Weibull distribution models, common in reliability engineering, soundly. The interpretation of the model parameters allows the assessment of the COVID-19 spreading characteristics. This paper shows the results of a research study of the COVID-19 spreading behavior depending on different pandemic time phases within Germany and Japan. Both countries are industrial nations but have many differences concerning historical development, culture and geographical conditions. Consequently, the chosen government measures have different impacts on the control of the COVID-19 pandemic. The research study contains the analyses of different pandemic time intervals in Germany and Japan: The breakout phase in spring 2020 and subsequently following waves until winter season 2020/2021.

Keywords: COVID-19 pandemic, Data analytics, Germany Japan comparison, Spreading behavior, Government measures, Social life.

Session [TU2B] — Risk Analysis and Safety in Standardization
Day/Date/Time Tuesday, 21 Sep. 2021 /10:25–11:45 hrs
Venue Atrium 2

TU2B: 118 10:25 hrs
Effect of Sunlight Exposition on Impact Resistance of Thin Polycarbonate Sheets
Luca Landi1,2, Alessandro Stecconi1,2, Mirco Vittori2 and Fabio Perza
1Department of Engineering, University of Perugia, Via G. Duranti, 63, Perugia, Italy.
E-mail: luca.landii@unipg.it
2Dipartimento Innovazioni Tecniche (DIT-INAIL), Rome, Italy.
E-mail: f.perza@inail.it

The design of guards has a fundamental role for safety of machinery. One of the purposes of the safety guards is to mitigate the risks of ejection of workpieces or tool parts. The ISO 14120:2015 standard represents the state of the art for the design, construction and selection of guards utilisable either to avoid access to tools and moving parts as to protect people from ejection of objects. In this standard the impact resistance of a guard is tested through a single impact of a projectile of standardised shape hitting perpendicularly the surface of a flat plate. Whether or not the panel is perforated determines the suitability of a given material with a given thickness to be used for the construction of protective panels.

The aim of this study is to analyze the possible influence of aging on polycarbonate guards due to a long-time storage before their use. During the storage period, the material may be exposed to different environmental conditions, the worst of which, involves the exposure to direct sunlight. In order to verify the possible effect of aging due to irradiation caused by exposure to sunlight, a simulation of this influence was performed using ultraviolet (UV) fluorescent lamps in a machine for accelerated tests. The aging cycle chosen for the simulation requires continuous exposure under constant lamp irradiation and
temperature without condensation cycles. The accelerated test was designed to obtain an aging equivalent at least to a period of one year of exposure being the panel placed in a vertical position and stored outdoors under direct sunlight but without rain on it. The reference solar irradiation conditions were chosen to replicate the same amount of energy typical of the centre of Italy. The conditions fixed for the accelerated aging tests will be fully explained on the paper.

The impact resistance of the aged panel is tested through impact tests on two sets of panels: a set of aged panels and a set of the same material without aging, in order to compare the results and highlight the possible effects of sunlight exposition. The tests were performed using the gas cannon at INAIL laboratories in Monte Porzio (Rome). The impact resistance of the panels was analysed with the well-known Recht & Ipsen (R&I) equation.

The data obtained from the tests proved that, under the described conditions, it is not possible to claim an aging effect of the sun light.

Keywords: Machine tools guards, Safety of machinery, Ejection risk, Aging due to solar radiation.

Withstanding Capacity Tests of Roller Covers, Bellows and Aprons as Guards for Machines
Fabio Peri1,2, Luca Landi2,3, Alessandro Stecconi2,3 and Ernesto Di Prete1,2,3

1Dipartimento Innovazioni Tecnologiche (DIT-INAIL), Rome, Italy.
2Department of Engineering, University of Perugia, Via Duomini, 65, Perugia, Italy.
3E-mail: \{f.peri@inail.it, aless.stecconi@outlook.it, e.prete@inail.it, f.pera@inail.it\}

Roller covers, bellows and aprons are generally used in order to protect machines from coolants and swarf and even people from noise but they are usually not designed in order to protect against impacts due to ejections of work-pieces or tool parts. In addition, these protections are often designed to protect against impacts due to ejections of work-pieces or people from noise but they are usually not designed in order to protect against impacts due to ejections of work-pieces or tool parts.

In the first part of this paper, we discuss about safety requirements of these protections with non-homogeneous characteristics. We show that it is very hard to accomplish standard requirements and we are often obliged to limit or interpret normative documents in order to get reproducible tests.

In the second part of the paper some tests performed on a roller cover made of aluminium solid stripes hinged with plastic connectors will be presented. We propose an adapted version of the standardized test of ISO 14120:2015 annex B in order to get repeatable tests able to discover the withstanding capabilities of such components when used as guards.

Finally, thanks to the use of high-speed images of impacts, we make considerations about impact phenomenology of these components.

Keywords: Machine tools guards, Safety of machinery, Ejection risk, ISO 14120:2015, Safety test, Covers, Bellows, Aprons, Curtains.

Risk estimations in occupational safety are usually only qualitative, so that a comparison with other risks in scaled form is often not possible, although risk comparisons are indispensable in the legally prescribed risk assessment of machines. In the following considerations, a general possibility for scaling risks in occupational health and safety will be explained for a typical safety function (SF) in machine tools, which is the safe standstill of a gravity-loaded axis (GLA). For simplicity, the considered causes of dangerous failures of this safety function will be an electronic control (A) in combination with a mechanical component (B). For the former, the probability density function PDF\textsubscript{A} is assumed to be an Exponential distribution, for the latter PDF\textsubscript{B} a Weibull distribution. As for a GLA, we are taking it for granted that the two failure modes are connected in parallel. Thus, if only one of the two components A or B fails, a hazardous event, such as a lowering movement of a tool spindle by gravity, is still prevented by the other component. Only when both components fail, significant hazards must be assumed, such as crushing and shearing. By connecting A and B in parallel, the probability of failure of the SF at a time t can be determined from the integrals (i.e., cumulative distribution functions, CDF) of the two probability density functions:

\[F_{SF}(t) = F_{A}(t) + F_{B}(t) - F_{A}(t)F_{B}(t) \]

For the scaling of the probability that a hazard H can actually arise from a failure of the above safety function, the parameter \(\Omega \), the so-called “occurrence probability of a hazard” according to ISO 12100, is used. For this purpose, a uniform distribution is to be assumed, so that \(O \) always has the same value, independent of all conceivable situations. Consequently, at a time t, the time-dependent hazard \(H_{SF}(t) = O \cdot F_{SF}(t) \) results.
For a dangerous failure to become a hazard, however, a person must be exposed to a danger, i.e. the person needs to approach the hazard to such an extent that an injury could occur. This would be the case, for example, if an operator were to perform manual operations in the work area of a machine tool under a GLA, e.g., to manually change a workplace in order to clamp another raw part after completing the part from before. Such operations are often recurring on machine tools. Their frequency distribution can be described with a Poisson distribution, from which an expected value of the mean frequency of exposure events can be assumed N_{Ex}. As for the occurrence of a hazard H_{G} due to a failure of the safety function assumed above, an independence between the failure and the presence of the operator in the hazardous area shall be assumed. This results in a multiplication of the two probabilities (or expected frequencies).

The relative hazard exposure Ex is composed of the frequency of exposure events NH_{G} and their respective duration D_{GLA} in the form of a product formation $Ex = NH_{G} \cdot D_{GLA}$ with its probability $P(Ex)$. A log-normal distribution is to be assumed for D_{GLA}, so that there are many short-term activities (with low exposure durations) and few moderate activities and very few activities of long duration. Thus, the mean expected frequency of hazard exposures Ex is the product of the expected values of a Poisson distribution and a log-normal distribution. The last element between a hazardous event and the occurrence of an injury is the so-called controllability with the parameter C. The expression $1-C$ as an “inverse controllability” is directly connected to the expected frequency of injuries. For this non-controllability, a Gaussian distribution is to be taken as a basis on the one hand, and on the other hand it is assumed that the non-controllability is independent of the other risk elements. Then it follows that the Gaussian distribution is used by its mean $(1-C)Ex_{mean}$.

For simplicity, the severity of an injury is assumed here to be scalar with a value of S, ignoring the fact that the severities of machine tool injuries are typically distributed between minor injuries and severe injuries in their frequencies over four powers of ten. That is to say, for a total of approximately 10^9 injuries, there are typically around ten severe irreversible injuries and one fatal injury.

This paper answers the question of how often injuries are to be expected on average with the assumptions made in a given time frame (e.g., a service life of 10 years or, and for comparison, 30 years). This produces a plausible result, which can be compared with other occupational risks, and it enables to prioritize different risk reduction measures.

Keywords: Safety function, Risk estimation, Occupational safety, Gravity-loaded axis, Hazard, Exposure, Pandemic control.
Maintenance actions constitute critical tasks that ensure the availability of industrial systems and improve their operating safety. However, maintenance faces numerous challenges and is no longer limited to guaranteeing availability. It has become a strategic concern and abides by imposing quality, safety, and cost requirements. Finding optimal grouping strategies of maintenance activities is an NP-hard problem that is well studied in the literature, and for which various economic models and optimization approaches are proposed.

While most models found in literature use heuristics, such as evolutionary algorithms, to locate cost-reducing grouping strategies, context-specific constraints that could arise within each system are not taken into consideration. For large complex systems, heuristic approaches cannot guarantee the convergence to a feasible solution. Therefore, we propose a new scalable and adaptive optimization algorithm based on a clustering approach to group maintenance activities in multi-component complex systems. The proposed Constrained Clustering-based approach takes into consideration domain-dependent constraints and provides grouping strategies in negligible times.

Keywords: Grouping maintenance strategies, Maintenance optimization, Multi-component systems, Meta-Heuristics, Constrained-clustering, Linear programming.
In this publication, we illustrate how the combination of a simulation tool, based on stochastic discrete event systems, and an optimization algorithm can be used to find (one of) the best strategy of maintenances. The simulations are led by an optimization algorithm. We propose a solution that optimizes system availability, and cost with system maintenance constraints using an exact mathematical formulation. A stochastic simulator performs calculations according to parameters provided by an optimization algorithm, which plans preventive maintenance schedules. The optimization algorithm provides the optimum maintenance scenario defined by the kind of maintenances to apply and the suitable schedules. The experiments show that the simulation based optimization algorithm gives more flexibility to the decision maker.

Keywords: Maintenance policies, Optimization, Simulation, AltaRica 3.0.

Optimal Planning Of Preventive Maintenance Tasks On Electric Power Transmission Systems

Mariana Rocha1,2, Miguel F. Anjos2 and Michel Gendreau1,3

1 Département de mathématiques et de génie industriel, Polytechnique Montréal, Canada.
E-mail: mariana.rocha@polymtl.ca, 2michel.gendreau@polymtl.ca
3School of Mathematics, University of Edinburgh, Scotland, United Kingdom.
E-mail: anjos@stanfordalumni.org

Any component of an electricity power system is susceptible to failure. The power transmission system connects the generating units to the local distribution systems, and its central operational role means that the scheduling of preventive maintenance of transmission lines must be carefully planned. This planning aims to ensure uninterrupted power supply by reducing equipment failures and accidents, increasing the quality of the energy supplied, and generally maintaining network reliability. The transmission maintenance scheduling problem is concerned with selecting the optimal periods to remove specified transmission lines from operation to carry out preventive maintenance.

We propose a mixed-integer linear optimization formulation of this problem for a planning period of one year. From an operational point of view, when scheduling preventive maintenance it is important to keep the transmission system connected as well as to consider the possibility of an unexpected line failure elsewhere in the system. The resulting largescale optimization problem is solved using a decomposition algorithm that divides the large model into two smaller optimization problems. One of these problems is solved with CPLEX through Benders decomposition, and the second is a means to validate the solution. We report computational results with the IEEE 24-bus system that demonstrate that the algorithm achieves the required accuracy and solves the problem more efficiently than if the complete formulation is solved without decomposition.

Keywords: Preventive maintenance, Power transmission system, Network reliability, Mathematical optimization, Decomposition methods.

CNN Based Analysis of Grinded Surfaces

Lea Hannah Guenthner1, Marcin Hinz2 and Stefan Bracke1

1Chair of Reliability Engineering and Risk Analytics, University of Wuppertal, Germany.
E-mail: 1guenthner@uni-wuppertal.de, 2marcin.hinz@uni-wuppertal.de, 3bracke@uni-wuppertal.de

The optical perception of high precision, fine grinded surfaces is an important quality feature for these products. Its manufacturing process is rather complex and depends on a variety of process parameters (e.g. feed rate, cutting speed) which have a direct impact on the surface topography. Therefore, the durable quality of a product can be improved by an optimized configuration of the process parameters. By varying some process parameters of the high precision fine grinding process, a variety of cutlery samples with different measuring device, gloss measuring device, spectrophotometer). To improve the conventional methods, a new image processing analysis approach is needed to get a faster and more cost-effective analysis of produced surfaces. For this reason, different optical techniques based on image analysis have been developed over the past years. Therefore, fine grinded surface images have been generated under constant boundary conditions. The gathered image material in combination with the classical measured surface topography values is used as the training data for machine learning analyses. Within this study the image of each grinded surface is analyzed regarding its measured arithmetic average roughness value (Ra) by the use of Convolutional Neural Networks (CNN). CNNs are a type of machine learning algorithms which can particularly be applied for image analysis. For the determination of an appropriate model, a comprehensive parameter study is performed. The approach of
optimizing the algorithm results and identifying a reliable and reproducible CNN model which operates well inde-
pendent of the choice of the random sampled training data is presented in this study. The classification is part of the
development of a condition monitoring tool for the fine
process of grinding.

Keywords: CNN, Image analysis, Artificial intelligence, Machine learning, Surface analysis, Optical inspection, Parameter study, Condition monitoring.

TU2D: 187
10:45 hrs

Method of Calibration Period Determination for Temperature Chamber based on Risk Analysis

Xinrui Zhang¹, Su Wei² and Tao Li³
School of Reliability and Systems Engineering, Beihang University, Beijing, China.
E-mail: *xirui@buaa.edu.cn, ²suw@buaa.edu.cn, ³1234567890163.com

The temperature box is the main equipment for tempera-
ture testing, and its accuracy affects the quality and credibil-
ity of the test results. Currently, temperature chambers are
Calibrated regularly, but too long a calibration period will
result in too high calibration risk, and too short a calibration
period will result in too high calibration costs. In order to
formulate a scientific and reasonable calibration cycle and
provide a theoretical basis, the following formulating meth-
ods are proposed. First, a combination forecasting model that
integrates similar product information is proposed, in
which GM(1,1) is used for overall prediction, Markov model
is used for residual prediction, combined weighting is used
to obtain the prediction sequence of calibration data, and the
specific temperature box is calculated with the same kind
The Euclid distance between temperature boxes is based on
the similarity function to determine the specific tempera-
ture box prediction model to predict the drift trend of per-
nance parameters in the next calibration cycle; secondly ,
the probability density function and reliability model of the
calibration parameters are used to establish the reliability
function in a certain period, consider the aging of the tem-
perature box, combine the actual use time and the number
of calibration cycles to establish a hybrid failure rate evo-
lution model, and derive the reliability function in the pre-
diction period based on the existing reliability function and
failure rate. The specific change time of the calibration cycle
is refined according to the reliability function; finally , the
validity of the proposed strategy is verified according to the
case analysis.

Keywords: Temperature box, Calibration period, Calibration
risk, Fusion similar information prediction model, Reliabil-
ity, Aging factor.
tance of this process lies in the fact that oxidization of the copper pads has to be avoided, and the solderability of the PCB needs to be ensured. For this reason, uncoated copper pads must be prevented.

In a previous study a model for the automatic detection of uncoated copper pads has been developed using a patchbased classifier. The model showed good results, but the approach was not suitable to be implemented in an industrial application. In this present study an instance segmentation approach was used to tackle the problem. The basis of the model is a R-CNN with mask prediction that has to be trained using image data. A PCB inspection unit was employed to generate the image data. Due to the high expense of the instance labeling, an approach adopted from active learning was used as strategy to select images that extend the training dataset efficiently. Evaluation of the developed model shows, that the great majority of defects is detected correctly. The future goal is to improve the model such that it can be included in an automatic fault detection system as part of an online quality control unit in the manufacturing process of PCBs.

Keywords: Ordine fault detection, AOI of PCB, Computer Vision, R-CNN, Instance segmentation, Reliability engineering.

Session

[TU2E]—Risk management for the design, construction and operation of tunnels

Day/Date/Time

Tuesday, 21 Sep. 2021/10:25–11:45 hrs

Venue

Amphi Jardin

TU2E: 281

10:25 hrs

Discussion on Possible Approaches for the Management of Pollutants in Tunneling in Rock Formations Containing Asbestos Minerals

Salvatore Pentimalli1,2, Rebecca Nebbia2, Achille Sorlini3, Enrico Pirz1,3 and Mario Patraccol1,2

1Department of Public Health and Public Health, Università degli Studi di Torino, Italy.
2Department of Management and Production Engineering, Politecnico di Torino, Italy.
3Tunnel Europe Lyon-Turin – TELT Snc, Italy.

E-mail: salvatore.pentimalli@unito.it, enrico.pirz@unito.it, mario.patracco@unito.it

Workers’ exposure to asbestos minerals is a major factor in the Occupational Safety and Health risks typical of tunneling. For, as well as being a carcinogen, the distribution of asbestos minerals in rock formations is highly irregular since their possible formation during the metamorphic process depends on various parameters. This makes a special risk assessment and management necessary. Many case studies of specific risk assessment and management of pollutants applied in tunneling are available in literature, so the aim of this research study is to define which can be implemented in case of formations containing asbestos minerals, in combination also with other solutions, and organize them in hierarchical order. Initially, to achieve this goal, a literature review was carried out in accordance with the PRISMA statement, to select the current solutions used to manage possible workers’ exposure to asbestos minerals. Subsequently, the various solutions selected (e.g., specific excavation techniques, catcher systems near the source; ventilation systems etc.) were given a hierarchy by order of priority and compared to each other. The selection of solutions and the priority order were achieved by taking into account the safety requirements for the construction of the base tunnel of the Turin-Lyon railway line. The study highlighted the fact that despite technological progress there are still some critical aspects in the management of pollutants and in particular of asbestos minerals.

Keywords: Occupational safety and health, Tunneling, Asbestos, Risk assessment, Risk management, Literature review.

TU2E: 308

10:45 hrs

Development of a Proactive Tool for Dangerous Goods Management in Tunnels

Myrto Konstantinidou1,2, George Sisias1,3 and Sotirios Kontogiannis2

1Systems Reliability and Industrial Safety Laboratory, Institute for Nuclear and Radiological Sciences, Energy, Technology and Safety, NCSR Demokritos, Athens, Greece.
2Distributed MicroComputer Systems Laboratory Team, Department of Mathematics, University of Ioannina, Greece.
3E-mail: achille.sorlini@itec-sas.com

As a rule, tunnels are considered safe road infrastructures. Nevertheless, when an accident occurs inside a tunnel it can maximize its impact and casualties due to its constrained space of occurring events. Undoubtedly, fire accident events are the greatest threat to road tunnel systems and destructive experiences such as the Mont Blanc fire in France (1999) or the fire in Yanzhou, China (2014) are indicative of the severity of such incidents. The use of automated deep learning and data mining algorithms that can provide accurate detection, frequency patterns and concentration predictions of dangerous goods passing through tunnels, is a significant fire incident restriction factor. To achieve automated detection, a post processing image detection tool has been developed, that identifies and marks the passage of danger-
Employing Serious Games to Increase Safety in Driving Through Road Tunnels

Konstantinos Kirytopoulos1,2, Andreas Mourelatos2, George Chatzistelios1,2, Panagiotis Ntzeremes2 and Myrto Konstantinidou3

1School of Mechanical Engineering, National Technical University of Athens, Athens, Greece.
E-mail: akkir@mail.ntua.gr, gchatzis@mail.ntua.gr, pntzeremes@gmail.com

2Systems Reliability and Industrial Safety Laboratory, National Technical University of Athens, Athens, Greece.
E-mail: andreas.mourelatos@gmail.com

3Systems Reliability and Industrial Safety Laboratory, National Technical University of Athens, Athens, Greece.
E-mail: myrto@ipta.demokritos.gr

Research has shown that tunnel safety is a matter of great importance. Recent studies have shown that, while driver behavior is one of the decisive factors in road tunnel accidents, drivers hardly receive proper education about the particularities of the tunnel environment, and they also exhibit deficiencies on how to deal with emergency situations inside a tunnel. As a means of tackling this challenge, the present research endeavor develops a software tool based on the concept of serious games, to educate and inform potential users on the specific rules and behavioral patterns that should govern driving through tunnels. To do so, the initial step was the determination of the basic instructions that a user must be familiar with, while driving through tunnels. The proper behavioral patterns were gathered from the relevant standards and guidelines and the specific needs for education have been explored through previous studies. Subsequently, the research proceeded with the development of an innovative tool for the purpose of users' training, consisting of a game environment which simulates from a first-person perspective the task of driving through a tunnel. Within this environment various different scenarios were developed with the aim of evaluating the knowledge of users as well as educating them. The ultimate aim is to further increase safety within road tunnels, focusing on driver behavior as one of the most crucial parameters.

Keywords: Tunnels, Risk management, Dangerous goods, Deep learning algorithms, Data mining, Image processing.

The Concept of Learning in Virtual Reality in the Context of Tunnel Fire Evacuation Knowledge

Tonja Knapstad1,2, and Ove Njå2,3

1Department of Safety, Chemical and Bioengineering, Western Norway University of Applied Sciences, Haugesund, Norway
2Department of Industrial Economics, Safety and Planning, University of Stavanger, Stavanger, Norway
E-mail: tonja.knapstad@hvl.no, ove.njaa@uis.no

This paper aims to explore how and what kind of learning is emphasized in the use of virtual reality to develop fire evacuation knowledge among participants. Experiences from several large tunnel fires in Norway highlight the need for deeper knowledge on tunnel fire evacuation. Virtual reality technology has developed rapidly in recent years and is regarded a powerful tool among fire evacuation researchers. The advantage of virtual reality is to give participants experiences with fire and smoke conditions without exposing them to real risk. A literature study was set up to examine learning from virtual reality. Our understanding of learning is based on a combination of cognitive and sociocultural perspectives. Virtual reality technology provides a safe context for behavioral challenges in different constructed and simulated tunnel fire scenarios. The complexity of real fire evacuation situations challenges the use of virtual reality, both as a validation tool and for learning required evacuation behavior in real situations.

Keywords: Learning, Virtual reality, Learning transfer, Evacuation knowledge.
Coastal bridges are crucial traffic components and vital to the increasing temperature and humidity, rising sea-level, and amplification of hurricane-induced surges and waves due to natural hazards is a critical step toward reliable transportation systems; while relative adaptation measures were seldom discussed. This study conducts a comprehensive analysis of the effects of different adaptation measures to climate change scenarios. The effects of retrofit adaptations on reducing long-term losses are examined and compared according to the proposed framework. Such a study results in systematic evaluations of different adaptation measures, which could help optimal and robust designs of coastal bridges and modifications of existing ones.

Keywords: Coastal bridge, Adaptation measure, Climate change, Long-term loss, Hurricane, CFD model.

Effect of Climate Change on Railway Maintenance: A Systematic Review

Saeed Mohammad Khahi\(^1\)\(^2\), Joaquim Tinoco\(^2\)\(^3\) and José Campos e Matoes\(^2\)

ISISE, Department of Civil Engineering, University of Minho, Guimarães, Portugal.

E-mail: \(^1\)mhousali@gmail.com, \(^2\)jtinoco@civil.uminho.pt, \(^3\)matos@civil.uminho.pt

According to international reports and publications, the effects of climate can cause rail failures and consequently leading to disrupt travel schedules and unforeseen delays. Extreme heat, cold and snowfall are among the most important climate changes conditions that affect the normal railway operation. Thus, in order to determine the appropriate maintenance strategy that reduce the social and economic impact of the repair interventions, it is fundamental to identify and predict in advance the potential points of failure. This paper compares and analysis different published studies related to railways failures by measuring the effects of weather on rail defect.

Keywords: Climate change, Railway maintenance, Performance, Railway infrastructure.

Pressure Distribution Patterns Between the Ballast and the Concrete Slab in Railway Trough Bridges

Silvia J. Sarmiento Nova\(^1\)\(^2\), Jacob Gjastadusiö\(^1\), David Akergren\(^1\)\(^2\), Jaime H. González-Libreiro\(^1\)\(^2\), Gabriel Sael\(^1\)\(^2\), Lennart Elfving\(^1\)\(^2\), Ibrahim Cortés\(^1\)\(^2\) and Ola Enoksson\(^1\)\(^2\)

1Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Sweden.

E-mail: \(^1\)silvia.sarmiento@ltu.se, \(^2\)jgjas@ltu.se, \(^3\)jaime.gonzalez@ltu.se, \(^4\)gabriel.sael@ltu.se, \(^5\)lennart.elfving@ltu.se

2Trafikkverket, Luleå, Sweden.

E-mail: \(^1\)ibrahim.cortes@trafikkverket.se, \(^2\)ola.enoksson@trafikkverket.se

In Sweden, a substantial amount of railway bridges is approaching their intended lifespans and are planned to be replaced. However, it is not sustainable neither from a financial nor an environmental perspective to replace these bridges if they are still sound and safe. Thus, an evaluation of their actual capacity is required with the aim of extending their lifespans. A way to obtain a more accurate capacity is to determine the loads that are acting on them. Available literature points out the lack of experimental investigations on sleeper-ballast contact pressure, as well as on the stress distribution along and across the ballast. Consequently, railway bridge design has been based on traditional approaches.
tional rather than rational assumptions, which can be quite conservative. In this paper, a review of models is carried out for evaluating stress patterns on the surface of the slab on ballasted concrete bridges. Then, a simplified finite element model of a concrete trough bridge, a common type of structure in Sweden, is used in a parametric analysis aimed to understand how the identified pressure distribution patterns affect the performance of this type of structure. Finally, with the purpose of studying how some parameters influence the bridge safety, a probabilistic reliability analysis is used. The reliability index beta (β) is obtained using the polynomial response surface method and its value is compared for different boundary condition scenarios. Also, the sensitivity factors for the considered random variables are compared and analyzed. Results show that the assumption of support condition and pressure pattern has a significant impact on the capacity, failure mode and probability of failure of this type of structure.

Keywords: Ballast, Load distribution, Trough bridges, Pressure patterns, Internal forces, Reliability analysis.

Design of Structures in the Changing Climate

J. Markova
Koliber Institute, Czech Technical University in Prague. E-mail: jana.markova@cvut.cz

The biggest contributors to the inherent uncertainty in the estimation of climate projections include natural variations in climate due to solar activity, future emissions of greenhouse gases and other harmful resources and uncertainties related to decision on effective reduction of emissions of greenhouse gases. The aim is to analyse how anticipated changes in European climate could affect the assessment of design weather parameters, including the partial factor design approach for structures according to Eurocodes, based on current knowledge concerning projection models of future climate in Europe.

Keywords: Climate changes, Design weather parameters, Probabilistic structural analysis, Partial factors, Target reliability, Corrosion of structures, Eurocodes.

Joaquim Rocha dos Santos1,*, Danilo Taverna Martins Pereira de Abreu1,*, Carlos Henrique Bittencourt Morais2,*, Danilo Colombo2 and Marcelo Ramos Martins2

1Analysis, Evaluation, and Risk Management Laboratory – LARRISCO, Naval Architecture, and Ocean Engineering Department, University of São Paulo, Brazil. E-mail: 1joao@usp.br, 2danilo.abreu@usp.br, 3carlos.morais@usp.br, 4mrmartin@usp.br
2CENPES, Petrobras, Brazil. E-mail: colombo.danilo@petrobras.com.br

Operating under the condition of uncertainty is intrinsic to the oil industry. Moreover, the field competition increases the pressure to obtain better results with diminished investment and costs. In this environment, the introduction of new technologies is mandatory. The insertion of new technologies has the objective to increase profits, but they also increase risks since they are not proven in the field. Project managers must deal with this dilemma without the necessary tools to clearly understand the big picture. A Decision Support System (DSS) is an interesting software tool that could help managers decide better in the presence of such uncertainties, dynamics, and many concepts. This paper presents discusses the characteristics of a DSS intended to contribute to project manager decision, presents some simulation tools, proposes a preliminary architecture, and discusses its internal components. The paper concludes that the development of such DSS is also a complex project that must follow some rules to have a greater chance of success.

Keywords: Oil field development, Risk management, Decision analysis, Decision support systems.
Uncontrolled Release of Crude Oil in the Groundwater from a Storage Tank – Critical Issues and S-EMS Improvements Linked to Seveso-IED Interfaces

Fausta Delli Quadria and Geneve Farabegolib

VAL-RTC, ISPRA – via V. Brancati, 48 – 00144 Rome, Italy.
E-mail: afausta.delliquadri@isprambiente.it, bgeneve.farabegoli@isprambiente.it

During environmental monitoring/control activity of the soil, close to a crude oil extraction/storage plant, polluted water with hydrocarbons have been found inside a sewage pipeline of the consortium that managed the wastewater treatment plant (WWTP). Same finding was noticed inside the WWTP by the operators, and in the ground area around the plant. Following investigations assured that a loss of containment occurred from the bottom of a tank, causing the pollution of 26000 m\(^2\) area from top surface down to groundwater level, with consequent strong environmental impact. Almost 400 tons of crude oil have been released in the environment. All plant activities have been suspended for 90 days during which inspections, checks and monitoring phases took place. The event has had a slow and long evolution, and was discovered only after months from the starting of the release. The accident is still under investigation, but interesting critical issues elements, linked to the root-causes of the accident, have been highlighted. Important Safety&Environmental Management System improvements have been carried out after Seveso and IED inspections. The accident put also in evidence, in order to avoid situations as the one occurred, the need to find ways to improve communication between Seveso and IED control activities and to adopt common approaches when dealing with the operation of an establishment in the respect of both safety and environmental issues.

Keywords: Crude oil, IED, Impact, Inspection, Maintenance, Release, Seveso, Storage tank.

Degradation of Process Safety Cultures – An Experience Based Perspective

Deshai Bothejua and Kumuduni Abeysingheb

Academy of Safety and Environmental Studies.
E-mail: adeshabothey@yahoo.co.org, bkumumaks@gmail.com

Due to the critical significance of “process safety culture” concept within industrial safety management domains, it is imperative to identify and discuss various factors that can cause positive safety cultures to degrade over the time. The concept of “safety culture” has been defined in different ways (Botheju et al, 2015; Botheju & Abeysinghe, 2015); but for the purpose of this paper, “the process safety culture” can simply be explained as the embedded psychological and cultural medium within which the decision makers who are crucial in making important process safety design decisions have to operate. Through long term experience, authors have seen how some of the worlds’ best safety cultures have evolved over the time, as well as how the same safety cultures are eventually started to degrade due to various reasons. The economic pressure, absence of major accidents over a long duration, impact of globalized human resources, lack of regulatory intervention willpower, and natural degradation without reinforcing actions are recognized as the key factors needing attention in this regard. The persisting economic pressures in the oil and gas industry has exerted dramatic downturns in some of the worlds best organizational safety cultures. Safety cultures can also become stagnant and passive due to the long absence of accidents or serious incidents within its operating domain. It’s a challenge to maintain good safety cultures at their maturity state without constant efforts; learning from past accidents and the accidents happening elsewhere must be used to the fullest extent to maintain essential moral within the organization. The cultures can change when human resources are recruited in significant scales without proper orientation to the new culture; especially when such employees are coming from more negative safety cultures. This can become a more prominent issue during the times of greater economic pressures. The regulatory intervention must exert its pressure proportional to the trends and dynamics in the industry. More relaxed intervention strategies cannot be continued in the times when safety cultures begin to erode. The safety cultures are subjected to natural degradation if not actively maintained. Continuous improvements and constant learning are key aspects of maintaining a positive safety culture. Degrading safety cultures can have long term repercussions on process safety, as some of the poor design decisions could result in major accidents decades after their implementation, especially towards aging assets and changing operating conditions. The full version of this article is considered to be useful for those involved in designing or managing industrial safety systems and management tools, or for any stakeholders directly connected to the process industry sector.

Keywords: Degradation of safety culture, Major accident, Petroleum industry, Process safety, Safety management.
Automatic Fault Trees Generation And Analysis for Thousands of Gas Transmission Units
Florent Brissaud
Department of industrial performance and safety, Research and Innovation Center for Energy (RICE), GRTgaz, 1-3 rue du Commandant d’Estienne d’Orves, 92200 Villeveure-la-Cambe, France
E-mail: florent.brissaud@grtgaz.com

GRTgaz owns and operates the longest high-pressure natural gas transmission network in Europe. The industrial assets of GRTgaz include more than 32,000 km of pipes, 26 compression stations, about 4,800 shut-off stations and more than 5,000 pressure reduction stations (notably for delivering public distributions and industrial consumers). In particular, the pressure reductions stations can have one to two lines, each line having one or two pressure regulators, plus safety devices (shutdown valves and/or safety relief valves), and other items (filters, manual valves, gas meters). In addition, each type of device exists in different models (technology, manufacturer, sizes, parameters) so that there probably no two stations that can be assumed alike. Since GRTgaz must transport natural gas on behalf of all its customers while ensuring optimum safety, cost and reliability, risk assessments need to be performed for thousands of these stations.

Keywords: Fault Tree Analysis, Weibull Distribution, Risk Assessment, Asset Management, Gas Network.

Safe Speed for Maritime Autonomous Surface Ships – The Use of Automatic Identification System Data
Leif Ole Dreyer
Department of Maritime Studies, Western Norway University of Applied Sciences, Norway.
E-mail: lod@hvl.no

Introduction: All vessels are required by law to proceed at a safe speed while at sea. However, there is no acceptable method of determining what value of speed could be considered safe. One way of determining safe speeds in different conditions could be the utilization of Automatic Identification System (AIS) data to create a safe speed model that maritime autonomous surface ships (MASS) could follow.

Objectives: Investigate if MASS can determine the safe speed without human support by utilizing historic AIS speed data of other vessels. Investigate further if AIS and visibility data show a strong relationship between visibility and vessel speeds, and if vessels generally show a reduction of speed in restricted visibility.

Methods: AIS and visibility data was collected and merged in an area off Western Norway in the period between 27 March 2014 and 31 December 2020. A simple linear regression was calculated and supplemented by two graphical methods for revealing relationships between two variables.

Results: A significant regression equation between visibility and speed was found. This relationship was not strong. Average transit speed was highest when visibility was below 1,000 meters.

Conclusion: The problem of quantifying the safe speed of a vessel in different conditions does not seem to be solvable by only using historic AIS data to create a model of normalcy which a MASS can follow.

Keywords: MASS, AIS, Safe, Speed, COLREG, Visibility.
A Hybrid Early-Warning System for Unsafe Crew Acts Detection and Prediction
Xue Yang1, Wen-Jun Zhang1, Marilia A. Ramos2, Hong-Guang Lyu1, Xiang-Yu Zhou1, Xiang-Kun Meng3 and Qing-Wu Wang1
1Navigation College, Dalian Maritime University, Dalian, China. E-mail: xue.yang@dlmu.edu.cn
2The B. John Garrick Institute for the Risk Sciences, University of California Los Angeles, United States. E-mail: marilia.ramos@ucla.edu

Around 70% of maritime accidents have been attributed to crew unsafe acts (Chauvin, Lardjane et al. 2013). Human unsafe acts may be predicted and analyzed through the identification and assessment of factors that influence human error, namely performance shaping factors (PSFs). This paper presents a hybrid early-warning system that integrates a detection model for procedure violation, and a prediction model for unsafe acts resulting from skill-based errors, decision errors, and perceptual errors (Figure 1). The early-warning system utilizes voluminous datasets collected from multi-source sensors, including on-body wearable sensors, video cameras and microphones placed on board. The prediction model is human error type specific and established using PSFs covering personal characteristics, task characteristics, environmental conditions, and ship characteristics. The PSFs and corresponding relative importance are collected from a literature review, historical maritime accident reports review, and questionnaires among experienced seafarers. A set of indicators are further proposed to rate the PSFs for quantifying the probability of unsafe acts. The hybrid early-warning system is planned to be installed and validated on a cruise ship to detect, predict, and early warn the unsafe acts of crews to prevent accidents from happenning.

Keywords: Unsafe acts, Early-warning, Human error, Maritime accident.

Sources of LNG Bunkering Leak Frequencies
John Spouge
Amber Safety Consulting Ltd, UK. E-mail: john@spouge.myzen.co.uk

A cleaner future for maritime transport relies on the ability to refuel ships with liquefied natural gas. Risk assessments of this LNG bunkering are sensitive to the likelihood of accidental leaks. While several sources offer leak frequencies for LNG transfer, few acknowledge their uncertainties. This paper investigates the available sources and synthesizes them to estimate an uncertainty distribution for LNG bunkering leak frequencies.

The paper first compares the leak frequencies that have been used in published LNG bunkering quantitative risk assessments and guidance documents, finding that they vary over 3 orders of magnitude. It then traces the original sources of the leak frequencies, which are rarely acknowledged, and sometimes incorrectly transcribed. Understanding of the original source, together with the judgements (and sometimes errors) that have been added to it, is necessary to appreciate the quality of any leak frequency. The paper proposes a set of criteria indicating high-quality leak frequencies, and uses them to rank the quality of the available sources. This provides a way of combining the available sources to estimate an uncertainty distribution for the leak frequency.

Until improved leak frequency models are available, this “wisdom of the crowd” estimate provides a better understanding of the likelihood of leaks than any single existing approach. It also highlights the importance of uncertainties when evaluating the need for additional safety measures in LNG bunkering.

Keywords: Risk assessment, LNG, Bunkering, Uncertainties, Hoses, Failure rates, Leak frequencies.
New Probabilistic Guarantees on the Accuracy of Extreme Learning Machines: An Application to Decision-Making in a Reliability Context

Roberto Rocchettai
Department of Mathematics and Computer Science, Technische Universität Eindhoven, The Netherlands.
E-mail: r.roccchetta@tue.nl

This work investigates new generalization error bounds on the predictive accuracy of Extreme Learning Machines (ELMs). Extreme Learning Machines are a special type of neural network that enjoy an extremely fast learning speed thanks to the convexity of the training program. This feature makes ELMs particularly useful to tackle online learning tasks. A new probabilistic bound on the accuracy of ELM is prescribed thanks to scenario decision-making theory. Scenario decision-making theory allows equipping the solutions of data-based decision-making problems with formal certificates of generalization. The resulting certificate bounds the probability of constraint violation for future scenarios (samples). The bounds hold non-asymptotically, distribution-free, and therefore quantify the uncertainty resulting from limited availability of training examples. We test the effectiveness of this new method on reliability-based decision-making problems. A data set of samples from the benchmark problem on robust control design is used for the online training of ELMs and empirical validation of the bound on their accuracy.

Keywords: Extreme learning machines, Scenario theory, Generalization bounds, Reliability, Decision-making, Machine learning.

Safety of Autonomous Ships – Interpreting High Confidence Mistakes of Deep Neural Networks using Heat Maps

Vegard Kamsvåg¹, **Erik Stensrud**² and **Ingunn Myrtveit**³

¹NSM, Norway.
E-mail: vegardkamsvag@gmail.com

²DNV, Norway.
E-mail: erik.stensrud@dnv.com

³BI Norwegian Business School, Norway.
E-mail: ingunn.myrtveit@bi.no

Deep Neural Networks (DNN) are used for image recognition in safety-critical functions of autonomous cars and ships. Car accidents have exposed DNN’s lack of robustness to irregular events like unusual image objects and scenes. A misclassification with a high score, which we term a high confidence mistake, is of a particular concern to autonomous ships where we foresee a remote, land-based human operator in the loop who can intervene if warned. A high confidence mistake will not generate a warning to the human operator. To assess the safety of the classifier, we need as a minimum to understand why the classifier fails. This study evaluates the Layer-Wise Relevance Propagation (LRP) heat mapping method, applied to maritime image scenes. The method is evaluated on a classifier, trained using transfer learning to classify marine vessels into one of four different vessel categories. As a part of this, test images have been manipulated to deliberately provoke failures in the classification module. The resulting heat maps have then been used to investigate the cause of the failures. The results suggest that heat maps help us better understand what features are relevant for the classification which is an important first step. Further research is however required to provide an assurance framework to assess the safety level or to assist in debugging a DNN.

Keywords: Deep neural networks, Safety-critical systems, Autonomous ships, High confidence mistakes, Heat mapping, Explainability.

Contrastive Feature Learning for Fault Detection and Diagnostics

Katharina Rombach¹, **Gabriel Michau**² and **Olga Fink**³

Intelligent Maintenance Systems, ETH Zurich, Switzerland.
E-mail: ¹rombachk@ethz.ch, ²gmichau@ethz.ch, ³ofink@ethz.ch

A multitude of faults can occur in operating systems. Some pose a safety-critical problem instantaneously and therefore, require immediate intervention. Others evolve slowly and only require maintenance if they are particularly pronounced. Due to the vast variety of different faults, it is
not efficient to react to each detected fault with the same maintenance action. Instead, the maintenance intervention planning needs to take into account which type of fault is detected and how severe the fault is. This allows planning maintenance efficiently. Too early maintenance downtime can be prevented and intervention time can be reduced e.g. by preparing required spare parts.

To achieve this, a fault diagnostics model is required that can accurately isolate different faults and determine their severity. Yet, specific challenges apply when learning data-driven fault diagnostics models. First, an operating asset is exposed to varying operating conditions and external influencing factors that cannot be controlled or known before. This results in high variability of the condition monitoring data within the healthy condition that is not caused by faults. A data-driven model might raise a false alarm for inherently unknown variations in the data if these were not part of the training distribution. Adding complexity to the task of defect diagnostics is that data often lacks detailed labeling to diagnose a fault. For example, the operator might not distinguish between different fault types or different fault severities in its maintenance reports. In that case, detailed information on the fault type and its severity is lacking when training the corresponding models, which essentially makes it an unsupervised learning task. The task of unsupervised fault diagnostic is often approached by clustering a low-dimensional feature representation of the data. Auto-Encoders (AE) are often used to learn a compact feature representation. Yet, the objective when training an AE is to fully reconstruct the input signal i.e. to pass all information about the data through the feature layer including data variations relating to varying operating conditions. This makes them sensitive to changing operating conditions at inference time. Contrastive learning poses an interesting alternative to extract features that explicitly aims to extract semantic meaning. The feature space is optimized with the triplet loss such that similar data points are closer to each other than dissimilar ones. In its supervised implementation, similar data points correspond to those with the same label whereas dissimilar data points are those with different labels. Hence, the triplet loss explicitly is designed to cluster data in the feature space according to their class label. This results in a compact feature representation.

In this work, we propose contrastive learning for the task of defect diagnostics. Our work is the first that applies the triplet loss to PHM applications. Further, we adapt the triplet loss to the case where no refined labeling is available. The resulting feature representation of the data shows to be particularly suited for defect identification under the limitation that certain operating conditions have not been observed in the training dataset. Our evaluation is conducted on the CWRU Bearing benchmark dataset.

Keywords: Faults detection & diagnostics, Contrastive learning.
Logistics of Critical Supply and Resilience During the Covid-19 Pandemic in Norway

E. A. Holte1, S. O. Johnson2, B. Kvamstad-Lervold3, K. J. Stundnes4, and O. Øby2
1 SINTEF, Trondheim, Norway
2 NTNU, Trondheim, Norway
3 E-mail: aeven.holte@sintef.no, stig.o.johnsen@sintef.no, beate.kvamstad-lervold@sintef.no
4 E-mail: kjstundnes@ntnu.no

The covid-19 pandemic has challenged the logistics of critical supplies such as food, fuel, and necessary medical supplies. A research project was executed to document how regional actors in the transport sector handle the logistic challenges during the pandemic in 2020, in Mid-Norway.

Key research questions were: (1) How is demand and logistics impacted by the pandemic (especially on critical supplies); (2) What is the impact on and between transport modes (e.g. air, sea, road, rail), and their ability to operate as normal; and (3) What is the effect on Norwegian import and export activities? This paper presents the results of a limited literature review on the risks of a pandemic on critical supplies, and systematic interviews of key actors in transport and logistics. Eleven candidates were interviewed in the period April to June 2020 and then analysed. In addition, nine candidates were approached for more informal conversations. All candidates were interviewed minimum two times to identify possible effects from the pandemic over a period.

Key findings show that logistics of critical supplies have been identified as an area in national risk assessments but has not been prioritized through actual action plans. Furthermore, the project discovered poor emergency preparedness and poor preparedness in logistics operations, although mitigated by the ability to improvise and use of existing resources to ensure necessary supply of critical items.

Keywords: Logistics, Transport Systems, Critical Supplies, Resilience, Safety, Covid-19 Pandemic.
ingle failure scenario, the Monte Carlo simulation method is adopted in this work to simulate the randomness of the disturbed equipment and the degree of performance degradation. The Kaleidoscope for Integrative System Analysis (KISA) considers "state virtual value" per equipment and the degree of performance degradation. The multi-perspective kaleidoscope (KISA) contributes a systemic perspective that can guide the exploration of complex issues. The presented KISA model contributes a systemic perspective that this study originates will be a valuable tool for a variety of assessments in the context CIP and beyond.

Keywords: Multi-perspective kaleidoscope, KISA, Critical infrastructure, Complex systems, Governance, Integrative system analysis, Conceptual modelling.

TU2K: 068 10:25 hrs

Towards Economically Efficient Security Risk Reduction

Vladimir Marbukh
ITL, NIST, Gaithersburg, Maryland, USA.
E-mail: vladimir.marbukh@nist.gov

Real systems contain potential vulnerabilities which can be exploited by adversary(ies) attempting to disrupt system operations. Highly aggregated macroeconomic Gordon-Loeb (G-L) optimization model for cyber security investments [1] assumes known system-level return on the security investment, measured by the corresponding macroeconomic utility. A missing link in application of the G-L model to a specific system is derivation of this macroeconomic utility from the system-specific microeconomic model for cybersecurity investments. This microeconomic model should identify the optimal mixture of investments in elimination/mitigation of specific vulnerabilities, given the aggregate level of security investments. In this paper we report on work in progress on developing microeconomic optimization model for security investments for systems with monotonic structures [2], which produces the system-specific macroeconomic utility to be used in the G-L model. Our analysis reveals intricacies of the problem, which deserve further investigation. In particular, Figures 1a-b depict the optimal investment in the system security reduction τ^{opt} as a portion of the cost of complete risk elimination C vs. the exogenous risk ρ. Figures 1a-b demonstrate that system structure critically affects the sensitivity of the optimal investment to the exogenous risk, which justifies and quantifies earlier phenomenological observations [3].
We discuss practical implications of this phenomenon for risk management.

Keywords: Security, Economics of risk reduction, Microeconomic model, Gordon-Loeb model.

Prevented Damage as Efficiency Indicator of Inspection and Control Activity
Lesnykh Valery1, a, Lukyanchikov Michael1, b and Timofeeva Tatiana2
1 LLC Gazprom gaznadzor, Novocheryomushkinskaya Street, 65, Moscow, 117413, Russia. E-mail: lb@gazprom-gaznadzor.ru
2 RUDN University, Moscow, Russia

The paper deals with the problem of effectiveness of inspection and control activities assessment. The analysis of various criteria for evaluating the effectiveness of control activities of hazardous industrial facilities is carried out. The analysis showed that the value of prevented damage can be used as one of the indicators of effectiveness. One of the approaches to assessing the prevented damage can be a pattern identified in the Heinrich-Berd pyramid. Examples of using this approach in solving various practical safety and reliability problems are given. A methodological approach to the assessment of prevented damage as one of the indicators of the effectiveness of inspection and control activities using the methodology of building the Heinrich-Berd pyramid is proposed. In addition to the traditional 4-level classification of events in the field of industrial safety, it is proposed to introduce the 5th level related to the identification of inconsistencies as a result of inspection and control activities. Identified inconsistencies are prerequisites for events of the 4th level of classification. Based on the analysis of statistical data of events at industrial hazardous facilities in the gas industry, a theoretical relationship between events of 1-5 classification levels (1-3-30-300-3000) is proposed. It is assumed that the elimination of identified inconsistencies (level 5) can "potentially" lead to the prevention of events at levels 1-4. A formula is proposed for calculating the expected prevented damage (direct and indirect), taking into account the ratio between events of different levels and the level of elimination of identified inconsistencies. Estimated calculations of the total prevented damage to industrial hazardous facilities in the gas industry were performed. The calculations showed the adequacy and practical significance of the proposed approach based on the Heinrich-Berd pyramid.

Keywords: Industrial safety, Inspection and control activity, Efficiency assessment, Risk-oriented approach, Proactive approach, Safety pyramid, Prevented damage.
addition to applying the proposed methodology to specific networked systems, we are planning to investigate a possibility of dynamic assessment/management of systemic risk with the ultimate goal of dynamic contagion containment.

Keywords: Networked system, Cascading failures/overload, Systemic risk mitigation, Economic efficiency.

Contagion Model for Multi-Layer Financial Network Considering Heterogeneous Liquid Asset
Juxing Zhu1,2 and Ning Huang1,2,3
1 School of Reliability and Systems Engineering, Beihang University, PR China
2 Yunnan Innovation Institute of Beihang University, PR China.
E-mail: 1zhujuxing@foxmail.com, 2hn@buaa.edu.cn

The liquid asset of a financial institution consists of cash, loan, realizable stock and bond. In the research of risk contagion caused by the liquid asset, i.e. the counterparty default risk, all the liquid assets are seen as the same kind, therefore the heterogeneity of the liquid asset and its influence for the is ignored. The systemic risk assessing method for multi-layer financial network proposed in recently study could analysis heterogeneity of the settlement time of the liquid asset, however, hardly analysis the heterogeneity that some kinds of asset price may fall down with the market price (stock and bond) while the other (cash and loan) would not. In this paper, we propose a model to describe the risk contagion of the multi-layer financial network consist of different liquid asset types. Firstly, we construct a multi-layer financial network withMlayer and N financial institutions, each layer represents a kind of asset and every financial institution will trade with other on each layer. Secondly, we describe two kinds of contagion in the contagion model, counterparty default risk and devaluation of the liquid asset. Finally, the difference between contagion result of the proposed heterogenous model and the homogenous model is compared through simulation. We find that the heterogeneity of the liquid asset will increase the contagion extent. The proposed model can analysis the effect of fluctuation in prices for heterogeneous assets, and will further support the study of the contagion mechanism in the heterogenous financial network, and offer guidance for making a reasonable macroprudential regulation policy.

Keywords: Multiplex networks, Financial risk contagion, Counterparty default risk, Risk propagation, Cascading failure.

Concerning the operation of standby systems in most ground systems, the standby units usually switch to the operating state after the active units fail. However, a periodic active switching strategy that differs from this common strategy is employed for the gyroscope standby system in satellite engineering. For this problem, this paper proposes an operation strategy optimization model for two-unit warm standby systems considering periodic active switching. The model comprehensively considers periodic switching and perfect switching, and based on the virtual age theory, derives the reliability function and mean time to failure (MTTF) of the twounit warm standby subsystem, which can be applied to units or systems with arbitrary time-to-failure distributions. Then, with MTTF maximization as the optimization goal, the optimal periodic switching interval is determined. Finally, a case study of a gyroscope warm standby subsystem is provided to illustrate the applicability of the model, and sensitivity analysis is carried out to identify the useful conclusions.

Keywords: Warm standby system, Periodic active switching, Operation strategy, Optimization, Reliability, Mean time to failure.
A Seamless Functional Hazard Analysis for a Fuel Cell System Supported by Spreadsheets
Axel Berres1 and Tim Bitter2
1German Aerospace Center, Braunschweig, Germany
E-mail: Axel.Berres@dlr.de, Tim.Bitter@dlr.de

The development of safety-critical systems requires the hazard identification and risk assessment during early development phases. For this task, Preliminary Hazard Lists (PHL) or Preliminary Hazard Analysis (PHA) can be used. Innovative systems can be found considering those hazards in a smart systems engineering. During development, the problem may arise that the information exchange is document-based only. If document-based development is unavoidable, an approach is required to enable a seamless data exchange among development tools. We describe a seamless approach used in FLHYSAFE during the Preliminary System Safety Assessment. Due to the widespread use of Excel, a template is created to perform the Functional Hazard Analysis (FHA). FLHYSAFE is used as an example project to show how the FHA can be integrated in the applied model-based development. Additionally, results of the seamless lean FHA as well as findings in system development are described.

Keywords: Functional hazard analysis, Preliminary system safety assessment, Seamless safety engineering, Excel data exchange, Safety.
Standardization in Risk Management Regulations: What Can We Learn from Scientific Literature?

Johan Ingvarson
Division of Risk Management and Societal Safety, Lund University.
E-mail: johan.ingvarson@risk.lth.se

The structural set-up and key characteristics of regulatory regimes for risk management vary between countries, technical domains and application areas. Risk regulations come in different forms, ranging from a highly prescriptive ("hard") approaches including explicit requirements on key risk management components, to "softer" approaches requiring risk to be managed without defining how. Risk regulations are subject to continual development. Increased standardization is observed in diverse risk domains such as land-use planning, terrorism and security risk management, cyber security, and disaster risk management. This development is contested and the question of what form of standardization is the most beneficial for effective and efficient risk management is debated. Using a scoping study approach, this paper presents an overview of standardization of risk in scientific literature. The aim of this paper is to provide insights related to the arguments, effects, and experiences of using standards or standardized approaches for managing risk. The results indicate that effects of standardization in risk regulations are not extensively covered in research. The paper contributes to the knowledge base for judging the appropriate level and form of standardization in risk regulations but more research is needed.

Keywords: Standardization, Risk, Scoping study, Literature review, Risk management, Risk governance, Regulation, Safety.

Experimental Investigation of the Kink Effect By Impact Tests on Polycarbonate Sheets

E. Uhlmann, M. Folte, R. Horst, N. Bengtström, S. Thom and P. Wittwer
Institute for Machine Tools and Factory Management, Technische Universität Berlin, Pascualstraße 8 – 9, Berlin, Germany.
E-mail: horst@iwf.tu-berlin.de

In machine tools, machine guard windows provide an insight into the working process of the machine and protect the user against possible ejection of parts during operation, such as chips, tools and workpiece fragments [1, 2]. To ensure the safety of the machine operator, impact tests can be used to determine or verify the impact resistance of the machine guard. Polycarbonate is the most commonly used material for machine guard windows due to its high toughness compared to other transparent materials. In general, an increase in sheet thickness results in an improved impact resistance. However, the studies of CORRAN ET AL. (1983) [3] show that for an increased sample thickness a reduction of the impact resistance occurs. The authors called this phenomenon Kink Effect. This contribution focuses on the investigation of the Kink Effect for monolithic polycarbonate sheets up to a thickness of 18 mm and a lathe standard projectile with a mass of 2.5 kg. Experiments were carried out to compare the material behavior of polycarbonate sheets under projectile impact for the dimensions of 300 mm (height) × 300 mm (width) and 500 mm (height) × 500 mm (width). The experiments were further evaluated using the RECHT & IPSON (1963) [4] method. Furthermore, explicit dynamic impact simulations were performed to enable the investigation of “close-to-edge” impacts.

Keywords: Impact test, Kink effect, Machine guard, Safety of machinery.
for repair service. In this study, we consider not only the degradation process but also random shock model and decision variables for the degradation threshold shock model. Total expected cost is minimized to determine an optimal maintenance cycle and optimal length of warranty period for the warranty cost analysis. Additionally, warranty service time for repair service and replacement service is considered with warranty service time limit to increase customers’ satisfaction. Suppose that the system deteriorates with age, we illustrate the proposed approach using numerical applications and investigate the influence of relevant parameters on the optimal solutions for the maintenance policy.

Keywords: Cost model, Expected cost rate, Optimal replacement age, Repair-replacement policy.

Modeling Multivariate Degradation Processes with Time-Variant Covariates and Imperfect Maintenance Effects

Xiaolin Wang1,2, Olivier Gaudoin2, Laurent Doyen2, Christophe Berenguer3 and Min Xie4

1Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, Hong Kong. E-mail: *xiaolin.wang@polyu.edu.hk
2Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK, Grenoble, France
3Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, Grenoble, France
4Department of Systems Engineering and Engineering Management, City University of Hong Kong, Kowloon, Hong Kong

In this article, we develop two degradation models to characterize multivariate degrading systems subject to time-variant covariates and imperfect maintenance activities. We first construct a multivariate Wiener process to serve as a baseline model, on top of which two types of models are developed to meaningfully describe the time-variant covariates and imperfect maintenance effects. The underlying difference between the two models lies in the way of formulating the impacts of covariates and maintenance. The first model reflects these influences in the degradation rates/paths directly, whereas the second one describes the impacts by modifying the time scales governing the degradation processes. In each model, we present two particular imperfect maintenance models that differ in the extent of reduction in degradation level or virtual age. The two degradation models are then compared in certain special cases. The proposed multivariate degradation models pertain to complex industrial systems whose health deterioration can be characterized by multiple performance characteristics and can be altered or affected by maintenance activities and operating/environmental conditions.

Keywords: Degradation path adjustment, Imperfect maintenance, Multivariate Wiener process, Piece-wise constant covariates, Time scale adjustment.

Degradation Modelling for Predictive Maintenance Under Various Operating and Environmental Conditions

Aurélien Cabarbaye1, Adrien Cabarbaye1, André Cabarbaye1 and Lip Sun How2

1Cab Innovation, France. E-mail: contact@cabinnovation.com
2AdveOTec, France. E-mail: lipsunhow@adveotec.com

This article deals with the estimation of the reliability and the remaining potential of equipment subject to wear whose degradation level is directly or indirectly observable. Based on accelerated non-stationary Lévy processes, reliability is estimated under various operating and environmental conditions, considering that wear level is included between the current state observed and an acceptable threshold. Among the existing models, the Variance-Gamma process shows great flexibility to depict the diversity of degradation phenomena and is therefore well suited for predictive models’ developments. However, its adjustment is difficult because its likelihood function includes a Bessel function in its expression and can thus have several local optima. Hybrid optimisation (global/local) then appears more precise than the local methods generally used. The industrial application case presented in the communication was carried out as part of the RYTHMS project funded by the European Union’s Clean Sky2 research program. It seeks to characterise optoelectronic components through accelerated testing.

Keywords: Predictive maintenance, Prognosis, Remaining useful life, Gamma variance process, Accelerated testing.
Degradation Modeling for Microrobots: Flexure Hinges Using Intracorporeal Surgeries

Liseth Pasaguayo1, Zeina AL Masry1,2 and Sergio Lescano2
FEMTO-ST institute, Université Bourgogne Franche-Comté, CNRS, ENSMM, 24 rue Alain Savary, Besançon cedex, France.
E-mail: lisethpasaguayo@femto-st.org, zeina.al.masry@ens2m.fr
AMAROB Technologies, 18 rue Alain Savary, Besançon, France.
E-mail: sergio.lescano@amarob.com

The new generation of instruments in the field of medical robotics aims to use devices that are less and less invasive for the patient. However, some of these microrobots are in underdevelopment and must undergo several tests in order to obtain the mandatory certifications to be used on patients. Indeed, one of the main tests to be validated is the accurate determination of their reliability and remaining useful life (RUL) in order to ensure optimal performance during the surgical procedure. This paper is focused on obtaining a degradation modeling for a microrobot dedicated to intracorporeal laser surgeries. For this purpose, simulated degradation data is collected from a four-bar compliant mechanism that fulfills the same behavior of a flexure hinge. For it, our work is based on the pillars of the Prognostics health and management (PHM). Knowing that a flexure hinge of the microrobot is a critical element and knowing that it is possible to have measures of the evolution of its performance and therefore of its degradation, we propose a data-driven degradation modeling by considering the normal life distribution in order to assess the reliability and the RUL. In conclusion, a data-driven model within the PHM study for lifetime estimation was presented.

Keywords: Data-driven, Degradation modeling, Remaining useful life, Reliability, Surgical microrobots, Flexure hinges.

State of Health Estimation for Lithium-ion Battery by Incremental Capacity Based ARIMA – SVR Model

Akash Basia1, Zineb Simeu-Abazi, Eric Gascard and Peggy Zwolinski
Univ. Grenoble Alpes, CNRS, Grenoble Institute of Engineering University Grenoble Alpes, G-SCOP, 38000 Grenoble, France.
E-mail: akash.basia@ensti.fr

With the increase in the use of Lithium (Li)-ion batteries for Electric Vehicles (EV) applications, it is imperative to think about using it sustainably. The circular economy suggests to reuse or re-purpose the End of Life (EoL) EV batteries in less demanding applications. The State of Health (SoH) is an essential indicator in making decisions while reusing or repurposing EoL Li-ion batteries of EVs. Conventional SoH estimation often requires capacity measurement from the battery’s full charge to cut-off state, which is quite challenging. In this paper, we propose an Incremental Capacity (IC) curve based SoH estimation system for Li-ion batteries. The model employs a Kalman filter and a finite differencing method for measurement noise attenuation. A novel method that combines Support vector regression (SVR) and the Autoregressive Integrated Moving Average (ARIMA) model is utilized to model the relationship between IC and the SoH. A use case is created on the NASA AMES open-source battery data. The case study shows that the proposed model can obtain accurate SoH prediction results without needing the State of Charge information of the battery.

Keywords: ARIMA, Diagnosis, Electric vehicles, Li-ion batteries, Prognosis, SoH, SVR.

Defining Degradation States for Diagnosis Classification Models in Real Systems based on Monitoring Data

Sergio Cofre-Martel1,2, Camila Correa-Jullian1,2, Enrique López Droguett2, Katrina M. Groth1 and Mohammad Modarres1,3
1Department of Mechanical Engineering, Center for Risk and Reliability (CRR), University of Maryland, USA.
E-mail: scofre@umd.edu, 2ccorreaj@umd.edu, kgroth@umd.edu, 3modarres@umd.edu
2Department of Mechanical Engineering, University of Chile, Chile.
E-mail: enlopez@uchile.cl

As the complexity of modern engineering systems increases, data-driven approaches have become valuable tools to aid maintenance decision-making. However, raw data collected from monitoring sensors require a comprehensive and systematic preprocessing to separate healthy from faulty states before
their use in data-driven models. Frequently, anomaly detection models implemented for this purpose are based on statistical relationships or rule-based thresholds, rather than on information provided from maintenance logs related to the internal operation of the system. In this work, we propose a framework to establish a link between the recorded sensor data behavior and the system’s degradation processes. In particular, this framework aims to obtain a labeled degradation dataset from raw monitoring data to train a diagnosis classifier for a system with multiple failure modes. A dataset obtained from two years of sensor monitoring and reported failure logs of a copper mining process line is used to exemplify the framework. Different machine learning classifiers are presented for each failure mode, individually and combined. Results show that the degradation labelling procedure is effective, and classifiers obtain up to 95% accuracy for the detection task for a two-class problem. Cross-comparison of the classifiers per failure mode allows the identification of problematic classes, showing the benefits of addressing each failure mode individually rather than for the entire system simultaneously.

Keywords: Diagnostics, Classification, Machine learning, Machinery data processing, Degradation detection.

Barriers and Drivers for Safety Related Innovation Within the Norwegian Tunneling Industry
Tone Iversen1, Brynhild Stavland2 and Henrik Bjelland3
Department of Industrial Economics, Safety and Planning, University of Stavanger, Norway.
E-mail: 1tone.iversen@uis.no, 2brynhild.stavland@uis.no, 3henrik.bjelland@uis.no

Working on innovative processes in the tunneling industry is interesting but demanding. This paper presents the outline of a regional program for developing new solutions and becoming a national and international knowledge Centre on tunnel safety. The Capacity Boost Tunnel Safety (KATS) aims to increase competitiveness and value creation in the Norwegian regional tunnel safety industry. The project is a cooperation between private and public businesses, authorities and research communities, building on a strategy of developing and making use of research-based knowledge to improve tunnel safety, both nationally and internationally. However, safety, especially fire safety related to major incidents is challenging to communicate. Norway has not experienced major accidents. In fact, no one has been killed from heat loads or smoke intoxications in Norwegian road- and railway tunnels. The growth in tunneling have led to a greater need for expertise, particularly within tunnel safety. Rogaland is developing some of the most complex tunnel systems in the world. New solutions must therefore be found, and new chains of values understood. This paper analyses the background state of knowledge of KATS and the three years of activities to assess barriers and drivers for developing innovative solutions in the tunnel safety business. The core of safety considerations is part of the analysis, in which we introduce prerequisites for active involvement by the important stakeholders in the tunnel industry.

Keywords: Tunnel safety, Complexity, Systems thinking, Safety innovation.

Capacity Boost Tunnel Safety – Using the SSM Approach to Increase Impact
Tone Iversen1, Brynhild Stavland2 and Henrik Bjelland3
1Department of Industrial Economics, Safety and Planning, University of Stavanger, Norway.
E-mail: 1tone.iversen@uis.no, 2brynhild.stavland@uis.no
2Department of Industrial Economics, Safety and Planning, University of Stavanger / Multiconsult, Norway.
E-mail: henrik.bjelland@uis.no

Capacity Boost Tunnel Safety (KATS) is a capacity enhancing project that aim to increase competitiveness and value creation in the Norwegian tunnel safety industry. KATS builds on an acknowledgement that improving tunnel safety is a task characterized by considerable complexity. A major goal for the project is to make lasting improvements and we strongly believe that developing new joint activities is a means for achieving this. Developing R&D applications for project funding with relevant partners is one example of joint activities. Although quite specific, this task has the potential of being quite complex. We argue that this can be considered as a messy situation due to many involved actors with possibly conflicting goals and difficulties with defining both what the problem is as well as the solution. This led us to Soft Systems Methodology (SSM) which was developed as a learning tool, to make better sense of complex, messy situations where the search for a clear-cut problem and the single optimal solution is futile.

In this paper, we report on our experience of exploring SSM as a tool to gain better understanding of what KATS should prioritize the coming three years. Our exploration is tested by trying to improve the problematic situation of developing research and development concepts that improves the industry’s position for future projects as a case. We conclude
that creating rich pictures contribute to an increased understanding of our knowledge gaps. Furthermore, SMS was useful in this context and worth developing further where KATS (as a whole) is defined as the problematical situation that needs improvement.

Keywords: Tunnel safety, Complexity, Systems thinking, Soft systems methodology.

A View on Asset Management Best Practices, Challenges and Risk in the Norwegian Oil & Gas and Tunnel Industry
Syed Taha1,2, Ove Njå2 and Jawad Raza1,3
1Integrity & Reliability services, APPLY AS, Norway. E-mail: syed.tahakhalifa.m, jawad.raza@apply.no
2Department of Safety, Economics & Planning, University of Stavanger, Norway. E-mail: Ove.Njaa@uis.no
3Division of Structural Engineering, Lund University, Sweden.

Norwegian Road tunnels and Oil & Gas (O&G) industry are going through major digital transformations as the technology evolves. Asset Management is relatively a new concept in the tunnel industry when it comes to the application of Asset Management principles, whereas the Norwegian O&G is more experienced in implementing this concept. Cross-industry knowledge transfer of Asset Management practices can significantly contribute to enhance safety, reduce cost, and improve Operations & Maintenance (O&M) practices. This paper is a novel attempt to map and bridge Asset Management practices between the two industries. This paper presents comparative views on (a) Asset Management in the O&G and Tunnel industry with special focus on O&M, (b) legislative requirements, (c) best practices and standardization bodies, and (d) risks, trends, and challenges. It is observed that both industries have developed guiding standards and assigned safety regulatory authorities. Best practices for the Norwegian tunnel industry are uncommon, whereas the other road authorities have attempted to outline their practices. Risks in both industries are similar, however the understanding and application varies. Trends of digitalization in both industries have significant value but comes with added challenges and threats. To conclude, both industries have realized the potential gains of Asset Management and are heading towards the right direction in implementing it.

Keywords: Asset management, Best practices, Offshore oil & gas, Norwegian industry, Operations & maintenance, Road tunnels, Trends & challenges.

Quantitative Assessment of the Impact of Climate Change on Creep of Concrete Structures
Amro Naser1,2, Erik Kjellström1, Oskar Larsson Ivanov1, Jonas Johansson1,2, and Daniel Honfi2
1Division of Structural Engineering, Lund University, Sweden
2Department of Public Works Engineering, Faculty of Engineering, Mansoura University, Egypt

Creep of concrete structures is in most cases regarded as a serviceability problem that may have impacts on maintenance and repair costs but cannot lead to structural collapse. However, several structural collapses during the past decades have been, at least partly, attributed to excessive creep deformations. Recent studies suggest that concrete creep may be further exacerbated by climate change. The current study demonstrates how this effect can be quantitatively assessed. For this purpose, six different creep models (i.e., Model Code 1999, Model Code 2010, MPF, B3, B4, and Bs models) are used under considerations of historical and future climatic conditions in southernmost Sweden as given by a regional climate model. Furthermore, two different simulations were performed as follows: 1) considering only climate uncertainty represented by the climate model, and 2) considering climate uncertainty, parameter uncertainty, and creep model uncertainty. The highest impact of climate change on end of century creep coefficient is observed using model B4 where the 75th percentile of the increase in creep coefficient is found to range from 8% to 14% depending on the climate scenario. The results of the assessment in this
article show that the uncertainty related to climate change on creep of concrete structures (higher effect in RCP8.5 than in RCP2.6 and RCP4.5 which have very similar results) is much smaller than uncertainties resulting from creep modelling.

Keywords: Climate change, Long-term deformations, Creep, Creep models, Creep coefficient, Parameter uncertainty, Model uncertainty, Infrastructure safety, Infrastructure performance.

TUF: 549
15:40 hrs

Influence of Concrete’s Mechanical Properties on the Cracking of Concrete Dams
Adrian Ulbjerg1, Andrea Seger2,3, Dipen Bista3,4, Marie Westberg Wilde5,6, Fredrik Johansson5,6, Oisik Das1,2 and Gabriel Sas1,6
1Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden.
2E-mail: adrian.ulfberg@ltu.se, Oisik.das@ltu.se, gabriel.sas@ltu.se
3SINTEF Narvik, Narvik, Norway.
4University of Minho, Guimarães, Portugal.
5E-mail: andrea.seger@ltu.se, dipen@tek.norut.no
6Norwegian University of science and technology, Trondheim, Norway.

Analytical methods of structural-stability assessment of concrete dams are often too simple and thus conservative in their predictions. Without the actual foundation geometry, capacity for some rigid body failure modes are underestimated. This is problematic when deciding upon remediation activities of a dam that is considered unstable and may divert the restoration activities from where they are most impactful. In a previous study by Sas et al. 2019 where a section of an existing dam was scaled down and tested experimentally, the model indicated that several areas were experiencing large stresses, potentially leading to failure. This raised the research question whether another type of failure would occur for different material properties. Therefore, this paper delves into a probabilistic numerical approach, through finite element analysis, to evaluate dam stability based on randomization of a number of material properties such as modulus of elasticity, tensile strength, compressive strength, and fracture energy. The variation of the aforementioned material properties did not impact the failure mode, which was consistent among a broad range of material strengths.

Keywords: Concrete dams, Model test, Numerical analysis, Material randomization.
With the continuous evolution of production systems towards Cyber Physical Systems and the existence of completely digital production systems, i.e., banking and e-commerce, support coding production systems are born to satisfy the need for new code that keeps their systems updated and competitive in an ever-evolving context. IT projects for digital factories are managed through Agile methodologies that allows to manage volatile requirements, nevertheless, due to the nature of agile methodologies to assign a small amount of time for grooming and planning, it is a challenge to provide a reliable estimation and planning for large scale projects and thus there is an obvious gap between planning and the real production schedule performed. This scenario difficult the quantification of production prioritization change’s consequences which difficult the company’s directors to take adequate decisions. To address such challenge, a methodology is presented in which the development teams of a same company are interpretated as a production system, noting their similarities and differences with a physical production system. This representation allows the user to perform and apply several of the asset management tools, which allows to perform better impact analysis and quantify the effect prioritization changes.

Keywords: IT planning, Assets management, IT development cells system modelling, Prioritization.

Recent developments in sensor technology and systems for connecting digital and physical systems, often associated with the terms Industry 4.0 and cyber-physical systems, are expected to bring substantial changes to how maintenance and asset management will be conducted in the coming years. Most of the research related to Industry 4.0 and maintenance have focused on technical aspects, and less attention has been given to how to organize and manage maintenance in order to take advantage of the new possibilities offered by the fourth industrial revolution. While many claims have been made about the potential improvements related to maintenance that can be achieved from implementing Industry 4.0, empirical studies suggest that industry practitioners are struggling to realize these improvements. There are also signs that there exists overall a poor understanding of how to implement Industry 4.0. The contribution of this paper is to address these socio-technical challenges with a multidisciplinary framework for the implementation of Smart Maintenance. The framework is divided into three levels: strategic, tactical, and operational, and is influenced by lean production, systems engineering and maintenance management.

Keywords: Industry 4.0, Predictive Maintenance (PdM), Plan-Do-Study-Act (PDSA), Systems engineering, SPADE, Smart Maintenance, Cyber-Physical Systems (CPS), Prognostics and Health Management (PHM), Maintenance management, Lean Production (LP), Hoshin Kanri (HK).

Visual inspection is a fundamental safety critical task in the air transport industry. This study investigates how a visual search strategy with a specific eye scanning pattern can be used to improve the observation of aircraft defects during visual inspection tasks. N = 100 aircraft maintenance technicians were recruited and N = 48 were allocated to a control condition. This group conducted pre-flight visual inspections on aircraft, using their normal cus-
Tuesday, 21 Sep 2021

STPA-Based Safety Analysis of Virtual Coupling Scenarios
Yiming Yang¹, Fei Yan², Ru Niu¹,² and Chunhai Gao³
¹State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, China.
²School of Electronics and Information Engineering, Beijing Jiaotong University, China.
E-mail: 19120264@bjtu.edu.cn
³National Engineering Research Centre of Rail Transportation Operation and Control Systems, Beijing Jiaotong University, Beijing 100044, China.
E-mail: rniu@bjtu.edu.cn
Virtual coupling comprehensively uses technologies such as computer, communication, and automatic control, and needs to consider multiple levels of conditions such as lines, trains, signals, and transportation, and break the original constraints by increasing perception and other means to finally complete functions and performance indicators. Compared with common urban rail transit systems, virtual coupling scenarios have higher requirements for safety. Leading indicators can give early warnings when any aspect of the system starts to deviate from the right track, so as to prevent it from having a major impact on the safe operation of the system. At present, the research on leading indicators of rail transit systems is still immature. The System-Theoretic Process Analysis (STPA) method searches the cause of the accident based on the extended accident causal model. Based on the causal scenario and safety constraints, propose relevant leading indicators. It also proves that the leading indicators can effectively observe and prevent risks, and solve the problem that the current risk analysis results are difficult to use directly.

Keywords: Visual, Inspection, Hazard, Defect, Observation, Improving, Search, Reliability.

In recent years, the research of next-generation railway focuses on enhancing the autonomy of unmanned train with AI techniques to identify, analyze and safely handle uncertain environments and emergencies. Due to the limitation of sensors and machine learning algorithms, it is essential to clearly and completely specify the operation condition under which the train control system is designed to work and ensure trains are always safely operating in this domain. This domain is well-defined as operational design domain (ODD) for autonomous vehicles firstly, but is often limited by the uncontrolled environment and the complicated traffic situation. In the field of urban rail transit, a clear definition can be assured by the closed operating environment and organized operation. Thus, this article gives the definition and structure of the ODD of rail transit to describe the safety constraints and assumptions. The factors that are relevant to the identification of ODD have been described and a framework for defining hazardous scenario of train operation based on ODD semantic is proposed. Further, a case of ODD identification and analysis for the typical scenario in unmanned train control system is used to demonstrate its contribution to safety assurance.

Keywords: Urban rail transit, Virtual coupling, STAMP/STPA, Accident prevention, Leading indicator.

Ru Niu¹,², Shijie Zhang¹,² and Yige Lei³
¹State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, China.
E-mail: ren@bjtu.edu.cn
²School of Electronics and Information Engineering, Beijing Jiaotong University, China.
E-mail: sjzhang@bjtu.edu.cn
³Traffic Control Technology Co., Ltd., Beijing 100070, China.
E-mail: chlige@bjtu.edu.cn

In recent years, the research of next-generation railway focuses on enhancing the autonomy of unmanned train with AI techniques to identify, analyze and safely handle uncertain environments and emergencies. Due to the limitation of sensors and machine learning algorithms, it is essential to clearly and completely specify the operation condition under which the train control system is designed to work and ensure trains are always safely operating in this domain. This domain is well-defined as operational design domain (ODD) for autonomous vehicles firstly, but is often limited by the uncontrolled environment and the complicated traffic situation. In the field of urban rail transit, a clear definition can be assured by the closed operating environment and organized operation. Thus, this article gives the definition and structure of the ODD of rail transit to describe the safety constraints and assumptions. The factors that are relevant to the identification of ODD have been described and a framework for defining hazardous scenario of train operation based on ODD semantic is proposed. Further, a case of ODD identification and analysis for the typical scenario in unmanned train control system is used to demonstrate its contribution to safety assurance.

Keywords: Operational Design Domain (ODD), Scenario generation, Risk defense model, Autonomous train, Unmanned system.
Several European railway actors are committed to develop a new train monitoring system that is implemented onboard trains, to replace the trackside integrity monitoring function. Having such an on-board integrity monitoring system is key issue toward operation in moving block, namely as in ERTMS Level 3. Such an operation allows not only for increasing the capacity of the line, but also for achieving substantial cost saving as various trackside equipment can be removed. Using an on-board control-command system for the train integrity functionality, transfers more responsibility, in terms of train operation safety, from infrastructure managers to railway operators. To ensure the implementation of a safety critical functions, such as the on-board train integrity (OTI) function, a particular care should be paid to its specifications. The present paper falls in this context and proposes formal verification of the OTI specifications to ensure their completeness and correctness, while tackling ambiguity inherent in textual specifications. Model checking is brought into play to check various types of properties automatically, in particular safety properties. This automatic formal verification technique allows for exhaustively checking the system behavior. An extended variant of timed automata that are supported by the UPiPAAL tool are used as a modelling notation.

Keywords: On-board train integrity, Railways signaling, ERTMS/ETCS, Moving block, Railway safety, System specification, Formal verification, Timed automata.

"K6 Telecom", a Dynamic Component Library to Lead Model-Based Safety Analysis for Critical Communication Networks
Legendre Anthony¹, Druet Jules², Sanchez-Torres José³ and Carer Philippe⁴
MIRE Department, EDF R&D, France.
E-mail: ¹anthony.legendre@edf.fr, ²jules.druet@edf.fr, ³jose.sanchez-torres@edf.fr, ⁴philippe.carer@edf.fr
The Electrical Grid (EG) is one of the largest industrial systems in the world. It is required to be reliable, available and safe at all times, immediately and everywhere. Major transformations of the EG are underway, in particular integrating news practices thanks to information and communication technologies (IT&C) by enabling interoperable information exchanges and controllable parts of the EG. EDF’s Research and Development has been designing formal methods and tools to lead operational safety studies for complex systems and their constituent assets. This article presents the new "K6 Telecom" component library developed by EDF R&D for the KB3 platform, which allows RAMS analysis of telecommunications and interconnections networks. It also presents EDF’s MBSA methodology, modelling tools and calculation engine used, characteristics, components and parameters of the library. Then, the article shows a RAMS analysis using “K6 Telecom” library performed on a case study: a large telecommunication network interconnecting industrial sites to data centers. This paper presents some results on the reliability, availability and failure sequence indicators. Finally, feedback on the usefulness and limitations of the current “K6 Telecom” library are announced at the end of this article before concluding.

Keywords: Model based safety analysis, Component library, Telecommunication networks, Interconnections networks, RAMS analysis, Markov chains.
Benefits of Graphical Animation of Advanced AltaRica 3.0 Models
Michel Batteux1, Walid Bennaceur2, Tatiana Prosvirnova3 and Antoine Rauzy4
1IRIT SystemX, Paris Saclay, France. E-mail: michel.batteux@irt-systemx.fr
2Laboratoire LGI, Ecole CentraleSupélec, France. E-mail: mokhtar-walid.bennaceur@centralesupelec.fr
3ONERA/DTIS, Université de Toulouse, F-31055 Toulouse, France. E-mail: tatiana.prosvirnova@onera.fr
4Norwegian University of Science and Technology, Trondheim, Norway. E-mail: antoine.rauzy@ntnu.no

Most system engineers today use graphical representations to represent their system models. This is important to better understand and to communicate not only on the system, but also on the model itself.

AltaRica 3.0 is a high level formal modeling language dedicated to probabilistic risk and safety analyses of complex technical systems. Models written in AltaRica 3.0 are textual. So according to the following adage “a good image is worth a thousand words”, graphical representations of these models are necessary for good communication; but the reference remains the text. Moreover, beyond simple graphical representations, graphical simulation of models can be used to perform virtual experiments on systems, helping to better understand the system behavior.

In this paper, we show how to model graphical representations using the high level modeling language GraphXica. GraphXica has the same structural constructs as AltaRica 3.0. It enables to describe graphical primitives (lines, rectangles, circles, etc.) and their animations (color change, scale, rotation, translation, etc.). Moreover, we illustrate how the graphical models of GraphXica can be coupled with AltaRica 3.0 models, and how their animations communicate with the stepwise simulator of AltaRica 3.0.

Finally, we demonstrate, by means of an example, the benefits of graphical animation of the textual AltaRica 3.0 models in order to perform virtual experiments by visualizing the incident or accident scenarios.

Keywords: AltaRica 3.0, GraphXica, Graphical simulation of models.

Flexibility of Analysis Through Knowledge Bases
Ola Backström1, Marc Bouissou2, Pavel Krcal1 and Pengbo Wang1
1Lloyd’s Register, Sweden. E-mail: Ola.Backstrom@lr.org
2Pavel.Krcal@lr.org
3Pengbo.Wang@lr.org

Model-based safety analysis (MBSA) offers multiple advantages for the stakeholders. The close link between a system description and the model that supports safety or dependability analysis allows automated model building and facilitates model reviews. Maintenance of the model benefits from a high-level system description with assumptions presented explicitly as an integral part of the model. Finally, the analysis process can utilize various properties of the system that are encapsulated in the components and their interactions.

This paper focuses on the flexibility of analysis that does not require large remodeling or even building a new model when the question to be answered calls for additional or different system aspects to be considered. We show how knowledge bases built in the Figaro modeling language enable this flexibility on several examples from various application domains and for multiple specific system features. The modeling effort becomes to a large part decoupled from the analysis. An analyst building a model does not have to keep a specific analysis method in mind and might not even be aware of methods that will be required in the future.

Keywords: Knowledge base, High-level modeling, Figaro, Automated model generation, MBSA.
Methodology on the Combination of Seismic Correlation Coefficient for Probabilistic Seismic Risk Assessment

Si Young Kim, Seung Jae Lee, Jin Wook Lee and Jung Han Kim
1 PhD Student, Department of Civil Engineering, Pusan National University
2 Master Course, Department of Civil Engineering, Pusan National University
3 Assistant Professor, Department of Civil Engineering, Pusan National University
E-mail: jhankim@pusan.ac.kr

Seismic fragility assessment has a procedure to combine random variables of response and capacity to produce the relationship between a failure probability and a seismic intensity. In order to evaluate the probabilistic seismic safety of a critical system, the probability of failure to the system is calculated from the seismic fragility of components according to the accident scenario. The evaluation of the failure probability of simultaneous multiple failure for more than two components has assumed that the failure probability of each component is independent. However, there should be a correlation because several random factors have same cause such as similarity of seismic properties. The multiple failure probability can be different depending on the correlation. It used to be unconservative without considering seismic correlation. Therefore, a practical methodology for fragility assessment with seismic correlation and the correlation coefficient for each random variable should be evaluated.

In nuclear power plant, to prevent core damage, two or more major safety-related components that perform the same function are equipped to ensure redundancy. These components will have correlations with each other and the correlations will change with the random variable. In this study, the components inside the auxiliary building of the example nuclear power plant was selected in order to evaluate the seismic correlation coefficient. And several random variables related to the seismic response were selected for numerical evaluation of the seismic correlation coefficient which can be estimated by numerical analysis. The correlation coefficient of each random variable was estimated by evaluation of the floor response spectra at the component locations. The entire correlation coefficient was combined by correlation coefficients of each random variable and it was compared with the method without separating variables. As a result, the method to evaluate correlation coefficient by combination procedure was validated and the effect of modeling fidelity was discussed.

Keywords: Probabilistic seismic risk assessment, Seismic correlation, Multiple failure, Response spectrum.
Modelling Seismic Damage Accumulation and Recovery in Aftershock Sequences

Eugenio Chioccarelli¹, Massimiliano Giorgio² and Iunio Iervolino³

¹Dip. di Ingegneria Civile, dell’Energia, dell’Ambiente e dei Materiali, Università degli studi di Reggio Calabria Mediterranea, Reggio Calabria, Italy. E-mail: eugenio.chioccarelli@unirc.it
²Dip. di Strutture per l’Ingegneria e l’Architettura, Università degli Studi di Napoli Federico II, Naples, Italy. E-mail: iunio.iervolino@unina.it
³Dip. di Ingegneria Industriale, Università degli Studi di Napoli Federico II, Naples, Italy. E-mail: massimiliano.giorgio@unina.it

Civil structures’ life-cycle may entail performance degradation, due to point-in-time events such as earthquakes and/or continuous aging, as well as the enforcement of maintenance and/or retrofitting policies. The current performance-based approach to the life-cycle analysis requires consistent modelling of uncertainty involved in the degradation and healing. Recent research efforts, based on the theory of age- and state-dependent stochastic processes, has explored modelling structural deterioration and structural recovery; only a few were devoted to a unified approach addressing the two jointly. The presented study, focussing on the case of structures subjected to a possibly-damaging major seismic event (i.e., the main shock), addresses a discrete-time discrete-state Markovian process to model both damage accumulation during the aftershock sequence and the damage restoration; i.e., the resilience of the structure. To this aim, the paper first discusses the considered phenomena acting on the structure, especially the peculiarities of the recovery, as observed after recent major seismic sequences; then, it shows how a Markov-chain, already adopted to model seismic damage accumulation, can be adapted to also describe the resilience curve. Finally, a single transition matrix is developed to describe the combined effects of both damage progression due to aftershocks as well as recovery. An illustrative application, calibrated on data from the Italian L’Aquila seismic sequence of 2009 (mainshock magnitude 6.3), and referring to a code conforming reinforced-concrete building, shows the capabilities of the holistic model.

Keywords: Resilience, Markov-chain, Performance-based earthquake engineering, Earthquakes, Aftershocks, Structural reliability.
Parameter Estimation of Accelerated Lifetime Testing Models Using an Efficient Approximate Bayesian Computation Method

Mohamed Rabhi¹,², Anis Ben Abdessalem¹,², Laurent Saintia³,⁴, Bruno Castanier⁵ and Rodrigue Sohoin Koffissè²
¹University of Angers, LARIS, SFR MATHSTIC, F-49000 Angers, France. E-mail: mohamed.rabhi@liebherr.com, mohamed.rabhi@etud.univ-angers.fr, laurent.saintia@uni-angers.fr, brunocastanier@uni-angers.fr
²LIEBHERR AEROSPACE, France. E-mail: KoffisseRodrigue.SOHON@liebherr.com

Accelerated lifetime testing is widely used for the estimation of high-reliability products. In this paper, the inverse power acceleration law is coupled to the Birnbaum-Saunders distribution assuming that both scale and shape parameters are stress dependent. The parameters estimation is approached with a new variant of Approximate Bayesian Computation method based on an ellipsoidal nested sampling technique. It is a promising and flexible alternative to deal with parameters estimation through numerous distances (metrics) that measure the similarities between simulated and empirical data. The proposed method ensures a good exploration of the parameters space and it is easy to implement. Moreover, it provides a good approximation of the posterior distributions. We compare the proposed method with the maximum likelihood method using real lifetime data sample. Finally, the goodness of fit of the model with different metrics is investigated.

Keywords: Accelerated lifetime tests, Parameters estimation, Approximate Bayesian Computation, Nested sampling, Acceleration law, Maximum likelihood, Metrics.

Solid State Drive (SSD) End to End (e2e) Reliability Prediction, Characterization and Control

Mohd Azman Abdul Latip⁶ and Erwan Basiron⁶
⁶SSD Reliability Engineering, Package Technology Development and Integration. E-mail: mohdala2m@yahoo.com, nashidmohsin255@gmail.com

A flaw or drift from expected operational performance in one component (NAND, PMIC, controller, DRAM, etc.) may affect the reliability of the entire Solid State Drive (SSD) system. Therefore, it is important to ensure the required quality of each individual component through qualification testing specified using standards or user requirements. Qualification testing is time-consuming and comes at a substantial cost for product manufacturers.
Evaluating the Application Availability of Intelligent Optical Networks Based on the Network Evolution Model

Zhiwei Yi1, Ning Huang1,2, and Huangsitong Cai3
1School of Reliability and Systems Engineering, Beihang University, Beijing, China.
E-mail: a zhiweiyi11@buaa.edu.cn, b hn@buaa.edu.cn
2Yunnan Innovation Institute of Beihang University, Kunming, China
3Viterbi School of Engineering, University of Southern California, California, USA.
E-mail: chestercai117@gmail.com

The demand for availability evaluation of application in Intelligent Optical Networks (IONs) has become prominent increasingy, while the dynamic and heterogeneous features of applications in IONs make the current availability models fail to make effective analysis. This paper proposes a novel application availability evaluation method based on the Network Evolution Model (NEM) containing the following three aspects: the evolution objects, evolution conditions and evolution rules of the network system. Taking the Automatically Switched Optical Network (ASON) framework-based network and two types of application within actual Service Level Agreements (SLAs) as case study, the verification and validation of the model is analyzed versus the results of exact methods firstly, then discussing the efficiency for evaluating the availability of large-scale network and multiple applications. The results show that the model is not only accurate for estimating the availability of traditional static application in small networks, but also effective for acquiring the availability of IONs’ application with dynamic behaviors, especially for large-scale networks with different SLAs. Furthermore, the model is versatile for the availability analysis in that the components of the network can be failure-prone with arbitrary failure probability distributions and maintainability schemes, and the applications’ protection schemes can be described as any combination of network evolution rules.

Keywords: Application availability evaluation, Network evolution model, Intelligent optical network, Dynamic restoration, ASON framework-based network.

Adaptive Faults Diagnosis and Reasoning Method Based on MFM

Huizhou Liu1,2, Jinqiu Hu1,3, Jing Wu2, and Morten Lind2,4
1College of Safety and Ocean Engineering, China University of Petroleum-Beijing, China
2Department of Electrical Engineering, Technical University of Denmark, Denmark.
E-mail: a luisi1469@gmail.com, b hujq@cup.edu.cn, c jinwu@elektro.dtu.dk, d mli@elektro.dtu.dk

Multilevel Flow Modeling (MFM) is an abstract hierarchical model of the complex process industrial system based on the system goal and the functional subject to achieve the goal. In a specific MFM model, there are two different modes of influence between function and objectives. In the first mode, the failure of a component or function will immediately lead to the failure of the final objective, while the second mode is the opposite. Namely, the importance of sub-goals and components to the overall or specific goals is not same. In this paper, we purposed an adaptive fault diagnosis and reasoning method combining MFM and improved Analytic Hierarchy Process (AHP). Firstly, the MFM model is established, which already has the function of preliminary fault diagnosis according to the signal and process parameters. Secondly, the improved AHP algorithm is introduced to calculate the weights of components and functions under typical failures. Finally, the importance of components and functions are sorted, and the MFM modeling method expands the ability of quantitative analysis, which is of great significance for assisting faults diagnosis and risk management. To better illustrate the structure and execution process of the proposed method, a case study on a lubrication system of a plunger pump is analyzed and displayed, which verifies the feasibility of this method for fault diagnosis and quantitative evaluation.

Keywords: Multilevel flow modeling, Analytic hierarchy process, Weight calculation, Quantitative analysis lubrication system.
Self-Exciting Jump Processes as Deterioration Models
Kristina Rognlien Dahl and Heidar Eyjolfsson
1 Department of Mathematics, University of Oslo, Norway. E-mail: kristin@math.uio.no
2 Department of Engineering, Reykjavik University, Iceland

Several different approaches to modelling stochastic deterioration for optimising maintenance have been suggested in the reliability literature. These include component lifetime distributions, which have the disadvantage of being binary, in the sense of only telling whether the component has failed or not. Failure rate functions model ageing in a more satisfactory way than lifetime distributions. However, failure rates cannot be observed for a single component, and are therefore not tractable in practical applications. To mitigate this, a theory for modeling deterioration via stochastic processes developed. Various processes have been suggested, such as Brownian motion with drift and compound Poisson processes (CPP) for modeling usage and damage from sporadic shocks and gamma processes to model gradual wear. However, none of these processes are able to capture jump clustering. To allow for clustering of jumps (failure events), we suggest an alternative approach in this paper: to use self-exciting jump processes to model stochastic deterioration of components in a system where there may be clustering effects in the degradation. Self-exciting processes exite their own intensity, so large shocks are likely to be followed by another shock within a short period of time. Furthermore, self-exciting processes may have both finite and infinite activity. Therefore, we suggest that these processes can be used to model degradation both by sporadic shocks and by gradual wear. We illustrate the use of self-exciting degradation with several numerical examples. In particular, we use Monte Carlo simulation to estimate the expected lifetime of a component with self-exciting degradation. As an illustration, we also estimate the lifetime of a bridge system with independent components with identically distributed self-exciting degradation.

Keywords: Self-exciting stochastic processes, Jump processes, Stochastic deterioration, Maintenance modeling.
Optimal Maintenance Interval for An Aging Distributed Generation System

Jackson Lee and Huadong Mo
Department School of Engineering and Information Technology, University of New South Wales, Canberra, Australia.
E-mail: jackson.tml@gmail.com, huadong.mo@adfa.edu.au

The aging is the inherent nature of mechanical systems, e.g., wind turbine. Therefore, maintenance is performed to return the generator to its optimal functioning. Analyzing an aging distributed generation system (DGS) is valuable to onlooking stakeholders where the economic value is of greater importance. This paper introduces a Wiener process with unit-to-unit variability to model the generator’s degradation path. Then, the aging DGS is simulated via a power flow model which outputs the energy not supplied and operation costs. A maintenance model is developed based on the difference of the real and expected operation costs, which is then optimised to determine the best maintenance interval that gives the lowest long-run cost rate (LRCR). Because the LRCR is not explicit which means the deterministic approaches or classical ones about the maintenance of a group of components are not applicable here, the optimal interval is decided by GA and PSO, as the benchmark. To avoid running the aging DGS for per interval, the problem of optimizing LRCR is converted into a model that can be solved by reinforcement learning (RL) algorithms. The solutions determined are for a DGS in Corvallis, Oregon, USA. The optimal interval for above DGS was around 2.716 years to return the lowest LRCR. The results will be compared to these of GA and PSO to show why the proposed RL based decision system is superior.

Keywords: Aging, Maintenance, Long-run cost rate, Distributed generation system, Power flow model, Reinforcement learning.

A Disassembly Path Planning Method for Mechanical Products in Narrow Passages Based on Improved RRT-connect Algorithm

Yuning Liang, Dong Zhou, Hongduo Wu, Qidi Zhou and Yan Wang
School of Reliability and System Engineering, Beihang University, China.
E-mail: liangyn@buaa.edu.cn, zhoudong@buaa.edu.cn, 205414269@qq.com, qidizhou@buaa.edu.cn, yangyan@buaa.edu.cn

The narrow installation space and complex assembly relationships of mechanical products bring difficulties to disassembly and maintenance. However, during product design process, it is difficult for designers to intuitively judge whether there is a product disassembly path in virtual environment. For such high-dimensional configuration space path planning problems, sampling-based algorithms such as Rapidly-exploring Random Tree (RRT) and its variants are widely used. However, due to the uniform sampling strategy of these algorithms, there are two problems: the planning performance is significantly reduced because of the low sampling probability in narrow passages, and the direction of products are random. Therefore, we improve the RRT-connect algorithm for disassembly path planning in narrow passages. First, we propose a narrow-biased sampling strategy to improve the sampling density in narrow passages. We use the bridge test to identify narrow passages, and modify the extend function of RRT-connect algorithm to make the tree extend to narrow passages with higher probability. We also propose a rotation constraint method to facilitate the disassembly and carrying of products. The rotation parameters are represented by unit quaternions and are changed only when necessary. When the sampling point is in wide space, the rotation parameters of the point are not changed. And when the sampling point is in narrow passage, the rotation parameters are changed to the direction perpendicular to the bridge (which means parallel to the narrow passage). Our method improves the efficiency of path planning in three-dimensional narrow space, and reduces unnecessary rotation of the product during random sampling.

Keywords: Disassembly path planning, RRT-connect, Narrow passage, Sampling strategy, The bridge test, Rotation constraint.
Critical urban infrastructures such as energy grid and transport network have the following characteristics: 1) These network-based systems have to fulfill continuous and stable transmission demand. The network-based systems are complex with many nodes and arcs. 2) Either system break or maintenance will lead to regional supply shutdown or shortage.

In this paper, we consider a network-based system with single-origin and single-destination. The degradation of the arc is caused by material aging and degeneration. When some components are failed, the load that they took has to be shared by the other components to hold the contracted demand. The early/potential failures are hidden until some consequences are evident to be detected/monitored.

On one hand, the maintenance activities take some regional shutdown. On the other hand, the system performance should be maintained at a given threshold. Due to the arcs locate in different region of the whole networked system, and then the maintenance sequence is important when the maintenance time duration is considered. Eventually the sequence of components waiting for maintenance should be optimized with the aim of restoring the system performance within given time, which means the demand of each OD pair can be met in given time.

In this paper the network average traffic objective is established to optimize and arrange maintenance sequence based on two rules: 1) capacity rule and 2) maximum network flow change (MNFC) to assign priority to critical infrastructure. Then the different sequences will be compared with the contribution to the network performance. Eventually this paper will model real infrastructure network and simulate maintenance procedure to verify the feasibility of maintenance scheme.

Keywords: Maintenance, Networked system, Infrastructure, Performance, Multi-objective, Optimization.
In the last ten years, deep learning-based models have proven to be suitable for prognostics and health management (PHM) by achieving promising results in both diagnostics and prognostics. However, there is still hesitation by companies to adopt these kinds of models, mainly because there is no straightforward way of interpreting the results a neural network achieves. Besides accurately predicting failure states, models must explain how and/or why these states are reached, in order to determine if there is bias, to build trust, and ultimately learn from the explanations.

To address this issue, we propose a technique for feature importance determination embedded in deep neural networks (DNN). The objective is that, after training, the DNN informs not only its performance values but how relevant to its trained task (whether it is diagnostics or prognostics) each of the input features is. To do this, feature importance values are treated as trainable weights within the network. Thus, importance values are adjusted during training with the rest of the network’s weights to minimize the loss function. We demonstrate this approach using a dataset with vibrational data from a ball bearing and compare with three other techniques. Results show that the presented technique does not affect performance, that it is able to recognize irrelevant features, and that it reaches high performance with less features than the other evaluated techniques.

Keywords: Feature importance, Model interpretability, Deep neural networks, Deep learning, Prognostics and health management.
the students based on the theoretical foundation of Kolb’s (2014) experiential learning, while changing the form of training on a short notice. Kolb’s theory is the foundation NORDLAB is based on. The learning context was changed to net-based training and exercises using the software zoom, with all participants geographically spread all over Norway.

Thus, our research question was: Which challenges in use of simulation and lab exercises in safety management education during COVID19 are central, and how could they be solved?

The challenges identified were 1) student’s lack of ability to actively participate in face to face learning activities 2) mentors’ lack of technological flexibility 3) inability to share the lab’s simulation technology with zoom 4) novice students difficulties of forming and interacting in digital teams 5) zoom fatigue 6) the need for increased administrative and technological support 7) low body language feedback 8) lack of visualization of insects. Solving the challenges were defiant and elements we used in this case were 1) on-boarding 2) table top exercises 3) video recorded lectures 4) flipped classroom 5) gaming simulated exercises 6) podcasts 7) shorter training sessions

We would like to discuss how and if the solutions matched the challenges for safety training in regard to the expected learning outcome for students who were to enter practical emergency preparedness and safety management.

Keywords: Safety, Training, Simulation, Covid19, Learning, Safety management.

TU4F: 654 16:30 hrs
Stochastic River Flow Forecasting Using a Markov-Switching Autoregressive Model
Bassel Habeeb1, Emilio Bastidas-Arteaga2 and Mauricio Sánchez-Silva3
1Institute for Research in Civil and Mechanical Engineering (GeM UMR CNRS 6183), University of Nantes, France. E-mail: bassel.habeeb@etu.univ-nantes.fr
2Laboratory of Engineering Sciences for the Environment (LaSIE UMR CNRS 7385), La Rochelle University, France. E-mail: charbel@univ-lr.fr
3Department of Civil & Environmental Engineering, University of Los Andes, Colombia. E-mail: manshi@uniamd.edu.co

Over time, the climate has changed considerably due to a wide variety of natural processes. During the last century, climate change has impacted infrastructure in different ways. In the particular case of bridges, it modified river flow and bridge scouring patterns, accelerating the deterioration process and reducing their lifetime. Therefore, design and operation require performing predictions that include the variations in river flow due to climate change. This paper represents a stochastic Markov-switching autoregressive model to improve river flow predictions. The proposed model was built based on a historical dataset for the Thames River in the United Kingdom. The dataset was used to predict and estimate the expected shortfall, which is the average amount of river flow lost over the predicted period, assuming that the loss is greater than the 99th and 95th percentile. The results of the model were compared with actual data achieving an estimated R² value of 85.45 %. Concerning severe river flow values, the stochastic model provides a R² value of 99.8 %. These results indicate that the stochastic Markov-Switching autoregressive model can be used with advantage to forecasting the climate change effects on river flow.

Keywords: Stochastic Markov-Switching autoregressive model, River flow forecasting, Climate change, Infrastructure reliability, Bridges, Scouring phenomenon.

TU4F: 669 16:50 hrs
Sensitivity and Reliability Analysis for Reinforced Concrete Structures Subjected to Cyclic Loading Using a Polynomial Chaos
Henriette Marlaine Imounga1,2, Emilio Bastidas-Arteaga2, Rostand Moutou Pitti1, Serge Ekomy3 and Charbel-Pierre El Soueidy3
1Université de Nantes /GeM UMR CNRS 6183, France. E-mail: henriette.imounga@etu.univ-nantes.fr, charbel@univ-lr.fr
2La Rochelle Université / LaSIE UMR CNRS 7385, France. E-mail: charbel@univ-lr.fr
3Université de Clermont Auvergne / Institut Pascal, France. E-mail: rostand.moutou@uca.fr, charbel@univ-lr.fr

Fatigue is one of the main causes of failure of reinforced concrete structures subjected to cyclic loading. Several mechanical models based on damage theory have been developed to represent the behavior of reinforced concrete structures subjected to cyclic loading. The use of these models requires knowledge about the model parameters which could be determined from experimental tests. However, there is few information about the more influencing parameters for probabilistic lifetime assessment. In this paper, we propose a methodology based on polynomial chaos expansion (PCE) to propagate uncertainties in a damage mechanical model. The PCE will also be used to perform a sensi-
Subsea cables are critical infrastructure for the global economy but are vulnerable to the risks of anchor strikes from ships, causing significant damage and interrupting global telecommunications or power networks. Whilst methodologies have been proposed to aid decision makers with optimal routing and mitigation strategies for these cables, such methods require definition of drag probabilities which thus far have not been empirically validated. In this paper, we present a framework through which anchor drag probabilities can be calculated through analysis of historical vessel traffic data and environmental conditions. Drag distances, probabilities and causal influences of conditions are shown through comparison of three million hours of vessel anchoring exposure. We show that the wind speed and wave height are the most significant factors for calculating the likelihood of anchor dragging, but other factors omitted in this study may also be influential. The results show that the method can improve the validity of Cable Burial Risk Assessments, supporting navigation authorities and developers with mitigating the risks to subsea cables.

Keywords: Maritime Risk, Subsea Cables, Automatic Identification System, Ship Anchors, Risk Analysis, Incidents.
Reliability Evaluation of a Data Communication System for a Flying Experimental Platform

Gianni Buzzoa, Lidia Travasciob and Angela Vozellac

Department of Reliability and Safety of Critical Infrastructures, CIRA Italian Aerospace Research Center, Italy.
E-mail: \texttt{g.buzzo@cira.it, l.travascio@cira.it, a.vozella@cira.it}

CIRA (Italian Aerospace Research Center) has been performing experimental flight test campaigns by means of FLARE platform based on a TECNAM P92 – Echo S. FLARE is equipped with an experimental set-up used for different experimental purposes.

To derive specific reliability figures as requested by the Italian Civil Aviation Authority, CIRA has started investigating the reliability modelling techniques that better suit FLARE configuration made up of hardware, software, homemade and Commercial off the Shelf equipment. CIRA decided to apply an incremental process, starting by On-board Data Communication System (COMSYS). Based on its configuration, a database has been filled in with reliability data, in terms of Mean Time Between Failure, Mean Time to Repair, failure and repair rates, these data coming from literature research, standards and suppliers’ data when available. A first reliability evaluation has been derived by applying Reliability Block Diagram technique. To have a deeper understanding of the potential failure paths leading to the loss of COMSYS functionalities, a second reliability evaluation has been implemented by means of Monte-Carlo simulation. This choice has also been done to easily derive minimal cut sets for identifying the most critical components, the potential mitigations and potential recommendations to design changes.

This paper shows the results of the comparison between the obtained reliability figures, paving the way to enlarge the analyzed system up to include the complete on-board experimental set-up.

Keywords: Data, Safety, Data flow, Data sources, Security.
Optical sensors have recently gained interest due to the many advantages they offer over traditional electrical sensors commonly used in aerospace applications. In particular, their total insensitivity to electromagnetic interference (EMI), the ease of multiplexing of different signals on a single line, the excellent resilience to hostile environments, the very compact dimensions, and the considerable overall weight savings resulting from the signal cables reduction, make technological solutions based on optical fibers a compelling alternative to traditional sensing elements. In this work, authors consider optical sensors based on Fiber Bragg Gratings (FBGs), which can reflect a very narrow band of wavelengths, called the Bragg wavelength, but are almost transparent for the other signals. This behaviour is obtained by realizing local variations of the refractive index of the FBG core. The Bragg wavelength, nominally defined in the production phase by the grating etching process, can vary as a function of physical changes in the sensor itself or environmental conditions (physical stresses applied to the grating or variations of temperature or humidity). The correlation of the Bragg wavelength variation with the physical variations of the sensor is essential to guarantee satisfactory environmental levels of accuracy and reliability. In particular, using FBGs as mechanical strain sensors, it is crucial to estimate with proper accuracy the disturbance generated by environmental conditions and conceive an effective compensation strategy.

Keywords: Aerospace applications, FBG, Fiber bonding, Environmental factors sensitivity, Mechanical strain, Optical sensors.

Environmental Sensitivity of Fiber Bragg Grating Sensors for Aerospace Prognostics
Matteo D.L. Dalla Vedova¹, Pier Carlo Berri² and Alessandro Aimasso³
Department of Mechanical & Aerospace Engineering, Politecnico di Torino, Italy.
E-mail: ¹matteo.dallavedova@polito.it, ²pier.berri@polito.it, ³alessio.laude@gmail.com

The SAF³RA project was created to strengthen the link between European researchers working on industrial and allied topics (FP7 ERA-NET, Grant Agreement no 291812). Between 2012 and 2015, it financed the creation of a mechanism to coordinate the research investment among EU countries. After the end of the ERA-NET in 2015, a formal Partnership has been created which now gathers 16 organizations from 12 European countries. Since 2013, six SAF³RA calls for projects have been launched, fully funded by the SAF³RA Partners. To select the topics, SAF³RA organizes symposia, inviting renowned experts from industry and academia. An independent panel evaluates the proposals and the funding arrangements used involve little bureaucracy. 23 projects have been funded to date, with 4 more projects at the starting line. The projects have involved 68 operating units from 17 European countries, covering many of the topics of “industrial safety”, and involving the most renowned European research teams, but also emerging ones. The purpose of the article is to analyse the benefits of this type of collaboration between research funders and present a roadmap for future strategic research. The article will use a series of evaluation indicators, also evaluating the effectiveness of the funds spent from a cost/benefit perspective. After eight years of hard work to promote transnational collaboration, SAF³RA leadership wants to assess the results obtained and discuss them with the industrial safety research community, to decide the direction to be given to the consortium in the coming years.

Keywords: Research funding, Industrial safety, Research programming, Future research.
A Risk Perspective on Common Operational Pictures: A Case Study of the Swedish Counties’ Coordination Office for the Covid-19 Response

Henrik Hassel1,2, Tove Frykmer2 and Alexander Cedergren1,2

1Division of Risk management and Societal Safety & Center for Critical Infrastructure Protection Research (CenCIP), Lund University, Box 118, 221 00 Lund, Sweden. E-mail: henrik.hassel@risk.lth.se, alexander.cedergren@risk.lth.se
2Division of Risk management and Societal Safety, Lund University, Box 118, 221 00 Lund, Sweden. E-mail: tove.frykmer@risk.lth.se

The Covid-19 crisis has led to widespread impacts on society, not only in terms of high death tolls, but also in terms of cascading effects for essentially all societal sectors, especially due to all measures taken to reduce the spread of the disease. A range of actors have become involved in the response to the pandemic and to ensure appropriate actions being taken, these actors need good situational awareness, which can be facilitated by developing and distributing common operational pictures (COPs). This paper presents a case study of the COPs compiled by the Swedish Counties’ Coordination Office (SCCO). A point of departure for the paper is that for a COP to become useful, they should not only contain information about the present but also contain description about future potential states and uncertainties. Since this is a perspective that is addressed by the risk science, this paper addresses the question of how risk science can add value to the work with COPs in general and the SCCO’s COPs in particular. Our results indicate that SCCO’s COPs fulfil the expectations of the Government Office who are the main target organization. But there is room for improvements, where risk science can add value, if the aim is to improve their usefulness as decision basis.

Keywords: Common operational picture, Situational awareness, Covid-19, Risk science, Uncertainty, Prediction.

Information-and Cyber-Security Practices as Inhibitors to Digital Safety

John Eidar Simensen1 and Bjørn Axel Gran2

Risk, Safety and Security, Institute for Energy Technology, Halden, Norway. E-mail: john.eidar.simensen@ife.no, bjørn.axel.gran@ife.no

Every year experience increased focus on cyber-information-security (CIS) from government, official organizations, private industries, and research and academia. As awareness on CIS improves in society, requirements to stakeholders become more numerous and more detailed. The natural response has been to develop CIS as a specialized field, resulting in digital safety and digital security separating into more distinct silos. The paper presents the authors experiences from safety and security analysis and development activities across last 20 years from a range of critical domains with focus on successes and challenges in addressing safety and security. Shared experiences indicate that CIS as a topical area has become both more important, but also more distinct in that it is addressed isolated. The identified challenges are discussed and a set of mitigations to prevent the self-alienation of security in safety are provided. The result is a set of best practices to navigate the projects where CIS concerns prohibit safety. To be able to fully integrate the safety way of working, i.e., information sharing and an inclusion culture, a revolt of current practices and ways of working within security is suggested.

Keywords: Safety, Information security, Cyber Security, Critical infrastructures, Critical systems development.

State-Dependent Seismic Fragility Functions for Italian Reinforced Concrete Structures: Preliminary Results

Mabel Orlacchio1,2, Eugenio Chioccarelli2, Georgios Baltzopoulos3,4 and Iunio Iervolino2,3

1Dipartimento di Strutture per l’Ingegneria e l’Architettura, Università degli Studi di Napoli Federico II, via Claudio 21,80125 Napoli, Italy. E-mail: mabel.orlacchio@unina.it, eugenio.chioccarelli@unina.it, georgios.baltzopoulos@unina.it, iunio.iervolino@unina.it
2Dipartimento di Ingegneria Civile, dell’Energia, dell’Ambiente e dei Materiali, Università degli Studi Mediterranea di Reggio Calabria, via dell’Università, 25, 89125 Reggio Calabria, Italy. E-mail: eugenio.chioccarelli@unirc.it

The present paper deals with the analytical assessment of structural vulnerability models for Italian reinforced concrete buildings that constitutes one of the results of the ongoing research project RISE (Real-time earthquake risk reduction for a Resilient Europe). The structures under consideration are taken from the outcomes of the SERA project (Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe) and refer to existing reinforced concrete residential Italian buildings.

State-dependent fragility curves are evaluated via back-analysis and a set of databases is considered. The results show that the performance of these structures is more dependent on environmental conditions at the time of the event than on the characteristics of the building itself. In particular, it is shown that under certain conditions, buildings can exhibit similar levels of performance even if they are designed and constructed differently.
Such fragilities are required to calculate the seismic structure curve, and are performed with the DYANAS software.

Keywords: Sequence-based seismic reliability, Back-to-back IDA, Damage accumulation, SDOF systems, Reinforced concrete.

Predicting Seismic Response of a Tall Building to a Large Earthquake Using Recorded Waveforms from Small Earthquakes

Nilgün Merve Çağlar and Erdal Safak
Department of Earthquake Engineering, Kandilli Observatory and Earthquake Research Institute, Boğaziçi University, Istanbul, Turkey.
E-mail: merve.caglar@boun.edu.tr, erdai.safak@boun.edu.tr

The Sapphire building located in Istanbul, Turkey is one of the tallest buildings in the country, which has 55 stories above ground level. The structure has been monitored by the Department of Earthquake Engineering of Kandilli Observatory and Earthquake Research Institute, Boğaziçi University since 2012. The response of the structure to several earthquakes is recorded by a 37-channel permanent accelerometer network, installed on the basement (9th, 25th, 36th, and 52nd floors. In this study, we determined the dynamic characteristics of the structure using the vibration data recorded by those instruments. The vibration data used in the analysis belong to 5 different earthquakes that occurred between the years 2014 and 2020. The dynamic response of non-instrumented floors is estimated based on the mode shape-based estimation (MSBE) technique. Then the structure is modeled as a cantilever beam on either Bernoulli-Euler or Timoshenko beam theories. The response of the structure to larger earthquakes is derived using the recursive filter methodology, which uses the corner frequency of the small earthquake and magnitudes for scaling. The maximum inter-story drift ratio (MIDR) is calculated under the effect of various PGV levels.

Keywords: Model calibration, Seismic risk, Earthquake scaling, Mode shape, Timoshenko beam, Bernoulli-Euler beam.

The analytical evaluation of seismic structural behavior under repeated earthquake shocks, that can potentially cause failure due to damage accumulation, often makes recourse to sequential dynamic analysis of a numerical model. One such dynamic analysis strategy is the so-called, back-to-back incremental dynamic analysis (B2B-IDA), whereupon one accelerogram is scaled in such a way as to bring the structure to a specific conventional damage state and is then followed by a second accelerogram which is scaled in amplitude over a wide range of shaking intensity levels, forcing structural response to span the entire range of possible damage states. The need to effectively capture record-to-record variability of response for seismic reliability analyses, means that B2B-IDA is typically applied using a multitude of ground motions representing both the first damaging shock as well as the second shock in the sequence that affects the damaged structure. The present study uses a variety of such SDOF inelastic structures to explore a series of practical issues that arise in running B2B-IDA and post-processing the results. This investigation uses the DYANAS graphical user interface, which was previously developed with the contribution of the authors as a tool that can be also used for streamlining this type of analysis. The first issue that is addressed in this study is the number of records used to represent both the first and the subsequent seismic shock affecting the structure. Previous research has shown that the statistical inference concept of estimation uncertainty can be used as a tool to quantify the effect of the record sample size, used in single-event dynamic analysis, on the accuracy of the results obtained. The present article picks up on that methodology and seeks to extend it in the context of B2BIDA. A second practical issue considered is the implementation of a hunt-and-fill algorithm in order to minimize the number of runs needed to efficiently represent a single B2B-IDA curve. Such an algorithm can allow the rapid transformation of B2B-IDA curves from one IM to another when combined with appropriate interpolation techniques. Finally, this article briefly addresses updates in the DYANAS software that were explicitly implemented to facilitate the extraction of results from B2B-IDA for the purpose of obtaining so-called state-dependent fragility functions, that is models providing the conditional probability of a structure transitioning from...
one damage state to another, given shaking intensity.

Keywords: Structural reliability, Non-linear dynamic analysis, Fragility function, Ground motion record selection, Performance-based earthquake engineering, Statistical inference.

Session [TU4K]—Accelerated Life Testing & Accelerated Degradation Testing
Day/Date/Time Tuesday, 21 Sep. 2021 /16:30–17:30 hrs
Venue Atrium 1

Accelerated Test Design of Aero Generator Based on Text Mining
Yao Jinyong1 and Jie Ma2
School of Reliability and Systems Engineering, Beihang University, Beijing, 100191 China.
E-mail: \texttt{jinyongyao@buaa.edu.cn}, \texttt{1158373130@qq.com}

In order to solve the problem of information collection in aero generator accelerated test, this paper proposes a text mining based fault analysis method for Aero generator products. In order to improve the efficiency and accuracy of fault analysis, text mining technology is used to process the weak links and fault modes of complex mechanical and electrical products. Firstly, based on Python software, a text information preprocessing method based on Jieba word segmentation system is developed. Then, aiming at the problem of unstructured information such as faults and weak links in mechanical and electrical products fault analysis literature, TF-IDF and LDA model are used to extract fault information features, which can fully describe the fault information and obtain the feature weight of text information. Finally, a text mining method of fault information based on support vector machine (SVM) is proposed. This method processes the fault information of mechanical and electrical products in the form of classification, and obtains the information of weak links and fault modes, which provides information support for accelerated test. The analysis method proposed in this paper can greatly improve the comprehensiveness of fault analysis. Finally, a typical generator product is taken as an example to verify the method.

Keywords: Text mining, Fault analysis, Jieba word segmentation, TF-IDF SVM.

Design Optimization for the Step-Stress Accelerated Degradation Test under Tweedie Exponential Dispersion Process
David Han
The University of Texas at San Antonio, TX, United States.
E-mail: david.han@utsa.edu

The accelerated degradation test (ADT) is a popular tool for assessing the reliability characteristics of highly reliable products. Henceforth, designing an efficient ADT has been of great interest, and it has been studied under various well-known stochastic degradation processes, including Wiener process, gamma process, and inverse Gaussian process. In this work, Tweedie exponential dispersion process is considered as a unified model for general degradation paths, including the aforementioned processes as special cases. Its flexibility can provide better fits to the degradation data and thereby improve the reliability analyses. For computational tractability, the saddle-point approximation method is applied to approximate its density. Based on this framework, the design optimization for the step-stress ADT is formulated under the C-optimality. Under the constraint that the total experimental cost does not exceed a pre-specified budget, the optimal design parameters such as measurement frequency and test termination time are determined via minimizing the approximate variance of the estimated mean time to failure of a product/device under the normal operating condition.

Keywords: Accelerated degradation test, Design optimization, Exponential dispersion process, Step-stress loading.
A New Estimation Method for Automotive Multidimensional Metrics

Abderrahim Krini1 and Josef Börsök2

1Engineering of Reliability and Quality, Robert Bosch GmbH, Schwäbisch Gmünd, Germany. E-mail: Abderrahim.Krini@bosch.com

2Department of Computer Architecture and System Programming, University of Kassel, Kassel, Germany. E-mail: Boercsoek.Josef@uni-kassel.de

In general, failure data is obtained in the automotive industry during the warranty period. If these contain the expression of a service life characteristic for each failure, statements can be made about the reliability and availability of the systems. For this purpose, estimation methods are used to adapt empirical lifetime distributions to theoretical lifetime distributions. By means of the distribution characteristics, a prognosis of the reliability and availability to be expected is also possible beyond the observation time. In addition to the data basis to be investigated, which is available completely in test bench and experimental trials or re-censored in the field, various methods can be used for estimation. In the past, several methods have been used, such as the estimators according to ECKEL \cite{1}, Kaplan-Meier \cite{2} or the estimators according to Pauli \cite{3}. In general, a field failure is subject to several stresses, which can be described by expressions of several lifetime characteristics. For this application case, which occurs in the automotive industry, the known estimation methods, \cite{1}, \cite{2}, \cite{3}, cannot be used. In this paper, the necessity of multidimensional estimation methods will be introduced first. Then, a new estimation method for multidimensional metrics is presented. In a further step, mathematical proof is given that the new method can provide realistic results. Finally, two example data sets from bench testing and field are presented. Furthermore, some recommendations for the use of the new method are concretized in this context.

Keywords: Failure data, Automotive industry, Warranty, Reliability, Availability, Distribution, Estimation methods, Metrics, Multidimensional estimation methods.
Many advanced Nuclear Reactor designs deploy passive systems for enhancing safety. Passive systems rely on natural driving forces, such as natural circulation, gravity, and internal stored energy, which do not require external power sources. Substantial efforts are underway towards improving reliability assessment methods for passive systems. However, consensus is not yet reached. The existing case studies of various passive safety system reliability assessment methodologies usually consider a single passive safety system, but the reliability of one passive safety system should also depend on other related systems which operate simultaneously. Thus, this work suggests a framework of passive safety system reliability assessment supported by multilevel flow modelling (MFM) methodology, and a preliminary application is conducted on a small modular reactor station blackout sequence to assess the reliability of Core Makeup Tank (CMT) to remove the decay heat. Also, a causal inference of MFM model and a sensitivity analysis is performed to prove the feasibility of the MFM supported core passive safety system reliability assessment methodology.

This paper deals with the problem of time shift failure diagnosis in a remanufacturing system when an equipment is late to ensure its functionality. So, the detection and localization of time shift failures must be done as soon as possible to avoid a degraded remanufacturing flow. This paper starts with a description of our modeling methodology of a remanufacturing line as a Timed Event Graph (TEG). Our approach for diagnosis (detection and localization) is an algorithmic approach compared to other related works which use an algebraic approach based on $(\max, +)$ algebra. Firstly, we propose an event-driven simulator for TEG which gives us the faultless behavior of the system. Secondly, we define several algorithms which take as input timed observations of the functioning of a remanufacturing system and allow to detect and localize time shift failures if there are present. A case study illustrates the feasibility of our approach.

Keywords: Remanufacturing line, Time shift failure, Fault detection, Fault localization, Timed event graph, Discrete event system.
The concept of sub-safety for high-speed trains is put forward for the first time. As trains run for a long time, train systems constantly age and degrade and enter a state of sub-safety. It is important to recognize the sub-safety state in a timely manner in order to implement safety control measures to prevent the system from entering a faulty state. Firstly, this paper analyzed the main faults of the devices in a high-speed train’s motor-drive system and their failure mechanisms. Secondly, a sub-health state was proposed for the main devices of the system. Then a degradation and state transition model for the devices was established based on differential equations. Firstly, we provide an assessment of the offshore operations, such as floating, production, storage and offloading, FPSO. Secondly and particularly, we develop a model for assessing the likelihood of leakage in an FPSO induced by environmental loads. From the existing methods, we propose to use the dynamic quantitative risk assessment (DQRA) method. The main stages of the study conducted are: (i) establishment of failure indicators, (ii) analysis of the interaction between indicators, (iii) risk evolution, consisting on risk evolution monitoring model based on Fault Tree and Event Tree (FT-ET), and (iv) reassessment of the probability of failure. A balance point between the three subsystems is desired for greater system availability resulting from better knowledge of failure mechanisms and risk forecasting.

Keywords: Dynamic reliability, Failure mechanisms, Availability, Corrosion, Leakage, Environmental loads, Failure Indicators.

WEIA: 317 09:50 hrs

Efficient System Reliability Demonstration Tests Using the Probability of Test Success
Alexander Grundlief1,2, Martin Dazer2, Thomas Herzig1,3 and Bernd Bertsche3
1Reliability Department, Institute of Machine Components, University of Stuttgart, Germany.
E-mail: alexander.grundlief@ima.uni-stuttgart.de,
2Head of Institute of Machine Components, University of Stuttgart, Germany.
E-mail: martin.dazer@ima.uni-stuttgart.de
3Head of Reliability Department, Institute of Machine Components, University of Stuttgart, Germany.
E-mail: bernd.bertsche@ima.uni-stuttgart.de

In order to demonstrate system reliability, the concept of “Probability of Test Success” is used, and an approach is presented that enables the reliability engineer to identify the most efficient test. Furthermore, general recommendations are given for the most common test types and series and parallel system structures. A case study exemplifies the findings by additionally considering financial aspects of system reliability test planning.

Keywords: System reliability, Reliability demonstration, Probability of test success, System, Test, Efficiency.

Session [WEIB]—Mathematical Methods in Reliability and Safety
Day/Date/Time Wednesday, 22 Sep. 2021/08:30–10:10 hrs
Venue Atrium 2

WEIA: 406 08:30 hrs

An Application of Semi-Supervised to Production Data
Dominik Brüggemann1, Marcia Himé2 and Stefan Bracke2
1Chair of Reliability Engineering and Risk Analytics, University of Wuppertal, Universitätsstraße 20, Wuppertal, Germany.
E-mail: dbruaggemann@uni-wuppertal.de, 2m.hime@uni-wuppertal.de, 3bracke@uni-wuppertal.de

Knowledge of the quality of a machine-manufactured product is crucial to its reliability throughout the product’s use phase and indispensable if a customer is to be assured of a certain quality standard. However, the quality of not all products can be determined non-destructively. In this case, machine learning methods are increasingly used to predict the quality of the product based on production parameters and non-destructively measurable attributes. Due to the
progress made in recent years, products can be reliably classi-
ifed if the amount of training data is large enough. How-
ever, the generating of such training data is often associated
with high effort and high costs. For this reason, the amount
data to be generated should be kept as small as possible
while maintaining reliable classification by the machine
learning algorithm. We therefore applied a modification of
the Yarowsky algorithm, a method from the field of semi-
supervised learning, in combination with DNNs. The Algo-
rithm involves a stepwise expansion of the learning dataset.
To expand the learning dataset, we used samples that were
assigned to a class with high confidence by the neural net-
work. We conducted our experiments on a data set, which
contains production parameters of 3600 knives. The dataset
features attributes of the surface topography determined by
computer vision and gloss values. The gloss values serve
target variables and were divided into 3 classes. For the
experiments, we used a neural network architecture that
was previously determined to be very performant for the
problem. We then conducted a series of runs of our method
to determine whether the method could be suitable for real-
world applications based on the metrics recorded.

Keywords: Semi-supervised learning, Machine learning, Self-
learning algorithm, Neural networks, Production process.

Optimization-Based Reliability Assessment of
Multi-Energy Systems
Raphael Wu1, Silvia Siri3, Paolo Gabrielli1,2 and Giovanni Sansavini1,2
1Reliability and Risk Engineering Laboratory, ETH Zurich, Switzerland.
E-mail: wur@ethz.ch, 2Electrical, Electronics and Telecommunication Engineering and
Naval Architecture Department, University of Genova, Italy.
E-mail: stefano.bracco@unige.it
3Department of Informatics, Biomechanics, Robotics and Systems
Engineering, University of Genova, Italy.
E-mail: silvia.siri@unige.it

Multi-energy systems (MES) connect different energy net-
works using conversion technologies, leveraging alternative
supply paths and redundancy to improve the integration of
renewable energy, the reliability and the profitability of
energy supply. This paper investigates MES reliability by
integrating a pre- and post-failure operational optimization
into a reliability assessment based on an alternating renewal
process. Expected energy not supplied and uninterrupted
supply times are used to quantify the MES’ ability to with-
stand failures of technologies, networks and external grid
supply. The method is applied to a Swiss MES that sup-
plies thermal and electrical energy demands of a mixed-
use district. A comparison of system configurations with
district. A comparison of system configurations with
energy pathways further increases the probability of uninter-
ruptted supply and decreases the expected energy not sup-
plied. However, reliability is not always increased by intro-
ducing conversion technologies that couple energy carriers.
In fact, heat pumps introduce a dependency of the heat sup-
ply on electricity, while combined heat and power plants
can be less reliable than other technologies, thus increasing
the expected energy not supplied.

Keywords: Multi-energy system, Reliability, Optimization,
Uninterrupted supply. Alternating renewal process.
Degradation Process

Massimiliano Giorgio and Gianpaolo Pulcini

1Dipartimento di Ingegneria Industriale, Università di Napoli Federico II, Napoli, Italy.
E-mail: massimiliano.giorgio@unina.it
2Istituto di Scienze e Tecniche per Energie e Mobilità Sostenibili (STEMS), CNR, Napoli, Italy.
E-mail: gianpaolo.pulcini@cnr.it

Although the degradation processes of technological units are naturally bounded, due to the finiteness of their physical dimensions and/or the nature itself of the degradation mechanism, the models adopted to describe degradation phenomena are typically unbounded. In general, this apparent contradiction does not significantly affect the effectiveness of unbounded degradation models, because degrading units are conventionally considered failed when their degradation level exceeds a threshold value that is quite far from the “natural” bounds. On the other side, however, the effectiveness of an unbounded degradation model can drastically diminish if the physical bound and threshold have comparable values. The aim of this paper is then to investigate the potentiality of the transformed gamma process in modelling bounded degradation phenomena. This idea is not new. Yet, differently than in other existing models, here the upper bound is treated as an unknown parameter and is estimated from the available degradation data. The proposed approach, which led to the definition of a bounded (state-dependent) transformed gamma process, is illustrated starting with a motivating example, which is developed on the basis of a real set of wear data of cylinder liners equipping a diesel engine for marine propulsion. Model parameters are estimated by using the maximum likelihood method. Fitting ability of the innovative proposed bounded process is compared with those of the unbounded gamma process, previously adopted to analyze these wear data. Potentiality of the proposed approach are critically discussed in the paper.

Keywords: Bounded degradation phenomena, Transformed gamma process, Remaining useful life, Residual reliability, Maximum likelihood estimation.
A systematic overview on the relationships and differences between DT and traditional approaches, such as simulation, is thus needed. This paper aims to contribute towards better understanding of DT, by reviewing different DT types with an aim of highlighting future research perspectives.

Keywords: Digital twin, Simulations, Prognostics and health management, Condition-based maintenance, Subsea.

A Survey on the Use of Digital Twins for Maintenance and Safety in the Offshore Oil and Gas Industry

Tom Ivar Pedersen1, Håkon Grott Størdal2, Håvard Holm Bjørnebekk3 and Jørn Vatn4

Department of Mechanical and Industrial Engineering, Norwegian University of Science & Technology (NTNU), Trondheim, Norway. E-mail: 1tom.i.pedersen@ntnu.no, 2haakogs@stud.ntnu.no, 3haavarhb@stud.ntnu.no, 4jorn.vatn@ntnu.no

Companies in the oil and gas industry have, since the fall in oil price in 2014, been under pressures to cut costs and improve the effectiveness of their operations. Digitalization is generally considered as an important contributor to achieve this. One barrier to benefit from digitalization that is increasingly being recognized by the industry is data silos. Digital twin is a concept that has been proposed to alleviate this problem, but there is a lack of common understanding of what this concept entails and the potential benefits of this concept. To gain a better understanding of how digital twins are used for maintenance and safety in the offshore oil and gas industry, we have conducted a survey in the form of a web-based questionnaire among practitioners from this industry. 15 responses to the questionnaire was included in the final sample. Nine of these were from respondents that reported to have implemented digital twins in their own organization or in their products or services. Because of the low number of responses, the results cannot be used to draw conclusion on the current state of digital twins for maintenance and safety in the offshore oil and gas industry in general. But the results offer some insights that can be useful for further research.

Keywords: Industry 4.0, Digital Twin (DT), Questionnaire, Survey, Industrial Internet of Things (IoT), Offshore oil and gas, predictive maintenance, safety, Norwegian Continental Shelf (NCS), Digitalization.

Reliability Digital Twin Approach Based on Bayesian Method for Brake Pad Wear Monitoring

Reliability Digital Twin (RDT) method is regarded as a novel Reliability assessment technology that integrates the characteristics of digital twin implementation and mapping. Based on the real-time data transmitted between physical space and digital space, RDT technology has ability to collect and transmit the parameters data that reflects the braking process of brake pads. Furthermore, the RDT models of the digital space is updated in real time to present the health status of the equipment in the physical space, which is used to guide maintenance-related decision-makings. This paper proposes a reliability digital twin approach based on Bayesian theory to realize the dynamic reliability evaluation and life prediction method for brake pads. Firstly, the wear performance degradation data of brake pads are obtained by accelerated degradation experiments, as well as the amount of wear is selected as its performance parameter to characterize its health state. Secondly, the brake pad wear reliability function and the performance degradation model based on the Wiener process are established, and Bayesian theory is used to update the models’ parameters in real time based on the transmission of dynamic sensor data. Finally, the reliability index of brake pad is calculated in real time, and the remaining wear life prediction of brake pad is realized under different degradation degrees. Numerical examples verify the effectiveness and accuracy of the proposed method. The proposed RDT approach can provide a more efficient and economical way to realize brake pad health assessment and maintenance activities.

Keywords: Reliability digital twin, Wiener process, Bayesian estimation, Reliability assessment, Remaining Useful Life (RUL).
Chao Yang1,2, Baoping Cai1,3, Xiaoyan Shao1,3, Yonghong Liu1,4, Yiliu Liu5, Yang Feng1, Guojie Liu6, and Honghui Wang5,6
1College of Mechanical and Electronic Engineering, China University of Petroleum, China.
E-mail: yangchao@upc.edu.cn, bcaiping@upc.edu.cn, xiaoyanyuan@upc.edu.cn, yonghongliu@upc.edu.cn
2School of Reliability and Systems Engineering, Beihang University, China.
E-mail: shaoxiaoyan@buaa.edu.cn, liuyh@upc.edu.cn
3Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, Norway.
E-mail: yangchao@upc.edu.cn
4College of Engineering, Ocean University of China, China.
E-mail: liuguijie@ouc.edu.cn
5Laboratoire Interuniversitaire des Systèmes Complexes (LISC), IRIT Jules Verne, Chemin du Chaffault, F-44340 Bouguenais, France.
E-mail: eric.martin@univ-ubs.fr
6Unio. Bordeaux, CNRS, Arts et M´etiers Institute of Technology, Bordeaux INP, INRAE, 331 Cours de la Lib´eration, F-33400 Talence, France.
E-mail: christophe.bois@u-bordeaux.fr

Condition-based Maintenance (CBM) is a combination of fault diagnosis, fault prognosis, and maintenance decisions. The diagnostic results can be used to predict the remaining life and maintenance plans are made based on current state and future state. Digital Twins (DTs) allows CBM to be carried out in a more efficient way. It simulates the operation of the system and realizes real-time interaction with the system. For this, the CBM model can get more data from the DTs and display the results through DTs. Compared with the traditional CBM, DT-based CBM is more intelligent, and thus, DTs-based CBM is widely studied in recent years. This paper presents the changes that DTs brings to CBM and the focus is the changes that DTs brings to fault diagnosis, fault prognoses, and maintenance decisions. The work divides the changes into three aspects, that is, DTs provides a new CBM framework, DTs provides data for CBM modeling and DTs provides good visualization tools. The future direction of DTs for CBM is also discussed in this paper.

Keywords: Digital twins, Condition-based maintenance, Fault diagnosis, Fault prognosis, Maintenance decisions.

A Usage-driven Approach to Characterize and Implement Industrial Digital Twins
Nathalie Julien1 and Eric Martin2
1Lah-STICL Lorant, University of South Brittany, France.
E-mail: nathalie.julien@lansec.s-bretagne.fr, eric.martin@lansec.s-bretagne.fr

The Digital Twin is a new concept with various definitions, shapes and applications. In recent years, publications on this subject have been increasing sharply without any real coherence, representing very different realities and including a wide variety of models. In order to clarify such a complex representation, we propose not only a global definition, but also a complete, usage-driven classification methodology. Our generic overview relies on three axes as the Digital Twin is not just a set of data or models but a data organization in information and meta-information allowing to combine models in order to provide usable required for its application. As the required services are evolving throughout the object lifecycle, the Digital Twin properties must also evolve, making it a ‘living model’. Seven different usages can be combined to respond to a wide range of industrial applications. We give different examples of this classification to support the deployment of the Digital Twin in predictive maintenance, line reconfiguration, operator training... Moreover, such a usage-driven approach also ensures to be user-centric, in order to foster acceptance and facilitate risk management.

Keywords: Digital twin, Agile manufacturing, Predictive maintenance, Smart manufacturing systems.
applied to a case study and its efficiency is evaluated by analysing the evolution of axial bolt preloads and transverse bolt forces during the assembly process as shown in Fig. 1. Results demonstrate the ability of the method to simulate different clamping sequences and to capture the interaction between shape defects, bolt-hole clearance and target axial preload.

Keywords: Bolted joint, Fastening process, Clamping sequence, Shape defect, Finite elements.

WEID: 724 09:50 hrs

Statistical Tolerance Analysis of Over-Constrained Mechanical Systems Using Tolsis Software
Antoine Dumais1, Pierre-Alain Rance2, Jean-Yves Dantan3 and Nicolas Gayton4

1Phimeca, France. E-mail: dumais@phimeca.com
2MECAmaster, France. E-mail: pierre-alain.rance@mecamaster.com
3LCFC, Arts et Mietiers ParisTech, France. E-mail: jean-yves.dantan@ensam.eu
4Institut Pascal, Université Clermont Auvergne, France. E-mail: nicolas.gayton@sigma-clermont.fr

All manufactured products have geometrical variations which may impact its functional behavior. Tolerance analysis aims at analyzing the influence of these variations on the product behavior, the goal is to evaluate the quality level of the product during its design stage. Analysis methods must check if specified tolerances enable the assembly and functional requirements. The technique consists in computing the non-conformity rate of the mechanism for both requirements, expressed in parts per million (ppm), by mixing the resolution of an optimization problem and reliability analysis techniques such as Monte Carlo simulation or FORM system approximation.

Analysis methods must consider geometrical deviations as realizations of random variables (resulting from the manufacturing process) and the worst admissible configurations of gaps. As the geometrical behavior is formalized by an implicit assembly response function, these configurations change depending on the deviations. Hence contact between the different parts of the mechanism may change according to the considered configuration. These configurations must be found using an optimization scheme. For simple mechanisms, it is conceivable to build the mathematical behavior model manually but for complex systems it is needed to build it automatically using a dedicated tool.

The presentation proposes to illustrate how the Tolsis software, integrated in catia or in SpaceClaim, can deal with such tolerance analysis problem. First a brief reminder on the behavior model will be presented. Then the characteristics of the software will be described using a mechanical system as example, from the initial definition of the surfaces and linkages to the evaluation of the non-conformity rates.

Keywords: Tolerance analysis, Over-constrained mechanism, Reliability analysis, Optimization, Non-conformity rate, Tolsis software.

WEID: 726 09:10 hrs

Tolerancing Analysis of Complex Assemblies with Surrogate Chaos and Kriging Meta-Models
Tanguy Moro
Direction de l'Expertise et de la Recherche, Institut de Recherche Technologique Jules Verne, France.
E-mail: tanguy.moro@irt-jules-verne.fr

In industry, the modelling of product/process assemblies is based on the theory of Geometrical Product Specification and tolerancing analysis. This industrial approach follows several international standards to specify the parts and to build stack-ups models of tolerances of an assembly. The main hypothesis of these standards is the rigid work-piece principle. However, for large dimensions thin parts and assemblies as example, under the effects of gravity and of the forces and/or displacements imposed by the tools, this rigid bodies assumption is not acceptable and “classic rigid stack-ups” can lead to non-representative results on functional requirements. Thus, this paper proposes an approach to take into account the flexibility of the parts and assemblies in the 3D tolerancing stack-ups. Coupling the tolerancing theory, the structural reliability approaches and FEA simulation, an original approach based on the stochastic polynomial chaos development, the Kriging meta-model and the Sobol' indices is developed to build 3D flexible stack-ups and to estimate the main tolerancing results.

Keywords: Tolerance analysis, Flexible parts and assemblies, Chaos development, Adaptable Kriging, Sobol' indices.

WEID: 751 09:30 hrs

Toward a Normalized Method to Evaluate the Quality and the Relevance of a Linear Approximation for Tolerance Analysis and Synthesis
Judic Jean-Marc
Automotive Seating, Faurecia, France.
E-mail: jean-marc.judic@faurecia.com

In tolerancing analysis and synthesis field, specified tolerances generally allow to expect small variations on parameters, justifying the use of a linear approximation for the transfer function between these identified parameters and studied resulting criteria.

With 1D textbook stack-ups, there is no doubt about this linearity, but in real world, geometrical, kinematical and
mechanical effects are common, in 2D and 3D, and the relevance of linear approximation is not obvious. Strangely, existing Tolerance Analysis Tools on the market never provides metric to evaluate the relevance of their linear approximations.

Today, technical enhancements allow to hope for the integration of parts flexibility in our stack-ups, and the question of the validity of the linearization reappears as legitimate. This question is not to determine if the cause-effect relationship to deal with is linear or not, but to validate if the use of a linear approximation is reasonable to deal with tolerances allocation and reliability assessment. Appropriate mathematical methods are known, usually named “regression analysis methods” and the problem is not theory, but about its implementation in tolerance analysis software.

The objective of this paper is to motivate tolerancing scientific community to build a normative frame guiding Tolerance Analysis Tools to integrate the relevant routines to evaluate the quality of their linear approximations. the question is finally about the confidence we can have in provided results.

Keywords: Tolerance analysis & synthesis – linear approximation -regression analysis- computer aided tolerancing.

Preconditions for Learning from Fires in Norway – Structural, Cultural, Technological, Interactional and Relational Aspects

Asbjorn Lein Aalberg1,2, Siri Mariane Holen1,3, Edvard Aamodt2 and Anne Elise Steen Hansen2,3,4

Aalberg, Aalberg, Holen, Aamodt, Hansen

E-mail: 1asbjorn.lein.aalberg@sintef.no, 2siri.mariane.holen@sintef.no, 3edvard.aamodt@risefr.no, 4anne.steen.hansen@risefr.no

1SINTEF Digital, Norway
2RISE Fire Research AS, Norway
3Norwegian University of Science and Technology, Norway
4Norwegian University of Science and Technology, Norway

Learning from incidents is widely accepted as a core part of safety management. This is also true for fires – however few fires in Norway are investigated. Fires are interesting incidents conceptually due to their potential of devastating outcomes on material and human lives and because they happen across all sectors and industries, businesses, and homes. In Norway, several different actors play a role in investigating and learning from fires, from the fire rescue services to directorates and Non-Governmental Organisations. The present study seeks to understand the preconditions for learning from fires in Norway, with emphasis on the formal actors that play a role in preventing and mitigating fires. Methodologically, the study is based on qualitative interviews conducted with relevant actors from first responders, authorities, and other sectors.
there are structural, cultural, technological, and relational aspects that seem to influence learning from fires in Norway. The results were analyzed using thematic analysis and the Pentagon model framework. The findings are discussed in relation to theories from organisational learning and learning from incidents.

Keywords: Organisational learning, Fire safety, Fire and rescue services, Pentagon model.

Innovative Road Safety Education Program
Isabelle Roche Cerasi1,a, Dagfinn Moe1,b, Jo Skjermo2,c and Jan Petter Wigum2
1SINTEF Community, Dept of Mobility and Economics, Trondheim, Norway.
E-mail: isabelle.roche-cerasi@sintef.no, dagfin.moe@nord.no, jo.skjermo@sintef.no
2Nord University, Stjordal Campus, Road Traffic Section, Norway.
E-mail: jan.p.wigum@nord.no

The Norwegian Council for road safety, Trygg Trafikk with SINTEF and Nord University developed a new road safety education program based on the last findings in Neuro-Education. Whereas traffic rules are essential and part of the school road safety education program, learning how to properly use attention in complex traffic situations was never taught before. This paper presents the method developed for stimulating schoolchildren’s reflection on traffic safety issues and three concepts: risk, orientation, and attention. SINTEF compared the new education program with the one currently in place in Norway at its Virtual Reality Laboratory. The program was evaluated with two groups of 5th grade pupils. A bicycle simulator and a Head Mounted Display (HMD) with an integrated Tobii eye tracking system, were connected to the Virtual Reality. The virtual environment was identical to the traffic center facility (a miniature traffic system with intersections. Traffic lights and signs) used for the school road safety education program. The results showed that the experiment group who participated in the new education program oriented themselves and used their attention better than their counterparts in the control group who followed the traditional program.

Keywords: Road safety, Neuroeducation, Schoolchildren, Cyclist, Virtual reality, Eye tracking system.

Security of Electricity Supply in the Transition Toward Smarter Grids
Sitan Antonsen1,a, Tor Olav Grotan2,b, Oddbjørn Gjerde3,c and Maren Istad1,a
1NTNUI Social Research Ltd., Norway.
E-mail: sitan.antonsen@samforsk.no
2SINTEF Digital, Norway.
E-mail: tor.o.grotan@sintef.no
3SINTEF Energy Research, Norway.
E-mail: oddbjorn.gjerde@sintef.no, maren.istad@sintef.no

The paper presents the results of an exploratory study of the way digital transformation processes can involve challenges for the security of electricity supply. The case for the study was the development of digital substations in a European electricity grid operator. By means of a sociotechnical approach, we studied digitalization as a process, focusing on transition risks related to the process itself. Six categories of challenges are described: 1) The role of risk assessment and risk management in procurement processes, 2) issues related to language, culture and competence, 3) the management of emergencies and crisis situations, 4) technological aspects of redundancy and oversight, 5) formal organization and responsibility, and 6) changes in regulation, regulatory roles and threat landscape. Common themes cutting across the six categories are discussed and the paper is concluded with a delineation of strategies that can serve to mitigate the risks involved.

Keywords: Security of electricity supply, Sociotechnical systems, Organizational factors, Risk governance, Societal security.

Prevention and Management of Industrial Risk Through Effective Citizen-Facing Communication from Authorities: The Experience of Regione Lombardia in Italy
Fabio Borghetti1,a, Giovanna Marchionni1,b, Marco Pont2,c, Andrea Delle Monache2,a, Pietro Lucia1,d and Annamaria Ribaudo2,e
1Mobility and Transport Laboratory, Politecnico di Milano, Italy.
E-mail: fabio.borghetti@polimi.it, giovanna.marchionni@polimi.it, marco1.pont@polimi.it
2Environment and Climate Department, Regione Lombardia, Italy.
E-mail: andrea.dellemonache@regione.lombardia.it, pietro.lucia@regione.lombardia.it, annamaria.ribaudo@regione.lombardia.it

The paper presents the experience of Regione Lombardia in Italy in promoting at regional level the activity of industrial risk communication from Authorities to citizens. After an
overview and a territorial analysis of the region carried out with GIS tools, the adopted approach is described: i) the organization of technical meetings with the municipalities of Regione Lombardia to collect best practices of risk communication, ii) the preparation of a survey for the knowledge of the state of implementation of communication tools in Regione Lombardia and for highlight the most suitable tool on which provide support by Regione Lombardia, iii) the development of an industrial risk communication tool represented by a brochure that can be filled and customized by different municipalities.

Keywords: Risk management, Safety culture, Risk communication, Societal risk, Dangerous goods industry, Emergency plan, Public engagement, Major accident Hazard, Major Hazard installation.

WE1E: 295 09:50 hrs

Getting Realism Into a Participative Framework for Operational Risk Analysis
Florent Brissaud1 and Romuald Perinet2
Department of industrial performance and safety, Research and Innovation Center for Energy (RICE), GRTgaz, 1-3 rue du Commandant d’Estienne d’Orves, 92393 Villeceuse-la-Cambronne, France.
E-mail: *florent.brissaud@grtgaz.com, romuald.perinet@grtgaz.com

The risk analysis is a systematic use of available information to identify hazards (potential sources of harm) and to estimate the risk (probability of occurrence and severity of the harms). Based on the risk analysis, the risk evaluation is used to determine whether the tolerable risk is achieved. The resulting risk assessment is a fundamental step for managing risk with the appropriate protective measures in order to obtain safety (freedom from unacceptable risk). It is suitable to make a risk analysis in an early phase of a project for anticipating the management and reducing both risks and costs. However, the risk analysis should also be updated once a feedback is observed. The reality of the operations may differ significantly from the procedures in mind during the design phase. It is therefore also very important to make a risk analysis during the operational phase. The main challenge is then to get the reality of the operations.

To get realism into the operational risk analysis, a framework has been developed in order to stimulate the participation of the operators. The guideline consists in creating a discussion forum suitable for: providing detailed explanations on the actual sequences of operations; discussing on the different practices; identifying the “weaknesses” and “strengths”; proposing “good practices” to integrate into the procedures and the trainings. The proposed framework includes several workshops under specific stimulating conditions, allowing to draft dedicated risk analysis sheets while avoiding tedious exercises and cognitive biases.

The participative framework has been applied to the drilling in-charge operations on the pipelines of the main high-pressure natural gas network in Europe. About twenty proposals have emerged from this operational risk analysis, in terms of competences and professionalism (minimal practice), tools and procurement (standard, verification), risk and guidelines (realism of the rules, risk reduction measures), operation management (validation procedures), and feedback (traceability, trainings). Additional concepts have been also proposed, such as the safety criteria (acceptable risk level in operation), the yellow lines (rules that can be derogated under conditions) and the red lines (inescapable rules, i.e. compulsory). Several updates of the guidelines have then been performed thanks to this approach, reducing the actual operational risks under realistic conditions.

Keywords: Operational risks, Risk analysis, Risk assessment, Risk management, Occupational safety, Human and organizational factors, Gas network, Gas pipeline.

WE1F: 010 09:30 hrs

Probabilistic Determination of the Phreatic Line in River Levees Under Steady-State Conditions and Its Effect on the Stability Statement
Niklas Schwiersch1,2, Bennet Dumke2 and Jürgen Stamm3
1Institute of Hydraulic Engineering and Technical Hydromechanics, Technische Universität Dresden, Germany.
E-mail: Niklas.Schwiersch@tu-dresden.de,
2B.O.R.I.S. Baubetreuung GmbH, Germany.
E-mail: b.dumke@boris-baubetreuung.de
3Juergen.Stamm@tu-dresden.de

Seepage is a sub-process of high relevance for a stability statement, because the phreatic line separates the cross-section into the watersaturated and the unsaturated cross-sectional part. In stationary cases, the phreatic line is imprinted into homogeneous systems by the outer cubature. In transient cases and the analysis of structured designs, its position depends on the material’s saturated permeability. However, the saturated permeability is a spatially scattering and therefore uncertain quantity which should be considered as such.

This paper presents a methodology to incorporate the phreatic lines probabilistically in river levee cross sections and applies to standard designs. Using input distributions, the position of the seepage line is analytically determined as an uncertain quantity. By means of a Monte-Carlo simu-
Fire in Railway Tunnels Dynamic Simulation: Structural Assessment and Effects Mitigation
Martini Francesco1, Quattrini Alessandro1, Quattrini Andrea1 and Ricci Stefano1
DICEA, Sapienza University of Rome, Via Eudossiana 18 Rome, Italy.
E-mail: 1martini.1586321@studenti.uniroma1.it, 2aleksandr.quattrini@hotmail.com, 3andrea.quattrini@uniroma1.it, 4stefano.ricci@uniroma1.it

Fire safety in tunnels is a key issue for railway safety. Various approaches are usable to assess the concerned risks and to assess how to manage them. Large-scale experiments are not economically affordable to recreate a significant variety of configurations, reason why Computational Fluid Dynamic (CFD) is nowadays the prevalent method to address such topics. This paper discusses the simulation of a very typical fire-scenario for lines with relevant freight traffic carried out with the Fire Dynamics Simulator (FDS). The scenario includes a 150 MW fire caused by an accidental spillage of liquid octane from a tanker inside an artificial railway tunnel. The main goal is to study how the geometric peculiarities of the tunnel can significantly influence the temperature field within the tunnel, to an extent that is not easy to predict through simplified conventional methods. The applied method bases on a sensitivity analysis on obtained results to the variation of specific parameters. The structural checks performed in this scenario show that prolonged exposure to fire plays a key role in reducing the load bearing capacity of the system. This result is more relevant for the structural elements inherently sensitive to spalling phenomena, triggered by high temperatures (e.g. beams or columns characterized by low concrete cover).

These elements need appropriate mitigation measures to prevent the onset of spalling phenomena. In particular, the case study shows how the installation of insulating plaster is able to protect the pre-stressed concrete roof beams and to safeguard the required safety level for the structure.

Keywords: Probabilistic analysis, River levees, Seepage, Permeability, Soil parameters, Reliability, Probability of failure.

WEIF: 160 08:50 hrs

The Importance of Implementing Building Information Modeling, Risk Analysis and its Impacts on a Real Estate Development: A Case Study
Alexandre Gomes Vinagre1,2, Marcelo Póvoas1,3, Matheus Bastos de Almeida1,2 and José Cristiano Pereira1,2
1Master in Engineering, Catholic University of Petrópolis, Brazil.
E-mail: 1alexandre.vinagre@gmail.com, 2marcelo.povoa@gmail.com, 3rennan.arrighi@live.com
2DSc in Engineering, Catholic University of Petrópolis, Brazil.
E-mail: 3josecristiano.pereira@ucp.br

This study aims to show the importance of developing and making compatible complementary projects using BIM (Building Information Modeling) and to analyze the risks on the costs and schedule during the execution of a real estate development. The study also shows that advanced response to risks improves performance, increases assertiveness in the work, minimize waste of material, rework and unecessary wear and tear. Construction work is complex, teams from various disciplines are involved, and a compatibility of projects is necessary to minimize execution errors and risks during the construction. The performance of a real estate project is affected by the lack of compatibility of complementary projects using the BIM (Building Information Modeling) methodology, generating conflicts between the disciplines, rework, cost, and time overflows. As a methodological approach, an in-depth literature review and a case study was conducted. The first step in the case study was to map out the whole construction process, then analyse the risks present in each step. The probability of existing risks at each stage was combined using Bayesian Belief Networks (BBN) and the impact were analyzed Analytic Hierarchy Process (AHP). This study is a source of information for professionals and companies planning to invest in BIM as support for decision making and shows the benefits in the practice.

Keywords: Building information modelling, Risk assessment, Analytic hierarchy process, Bayesian belief networks.

WEIF: 342 09:10 hrs
A Stochastic Simulation Scheme for the Estimation of Small Failure Probabilities in Wind Engineering Applications

Srinivasan Arunachalam and Seymour M.J. Spence
Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48105, U.S.A.
E-mail: *srinarun@umich.edu, sml@umich.edu

To ensure the feasibility of performance-based wind engineering (PBWE) frameworks, particularly when it involves computationally expensive nonlinear dynamic analyses and estimation of small failure probabilities, there is a need for efficient stochastic simulation schemes. To this end, an optimal stratified sampling-based Monte Carlo simulation (OSMCS) scheme is proposed to simultaneously estimate failure probabilities associated with multiple limit states including those which are implicitly defined. The scheme is based on the optimal allocation of Monte Carlo simulation (MCS) samples among the strata which are partitions of the uncertain parameter space, defined using one or more input random variables. The partitions enable simulation of rare events and the optimality guarantees minimum estimator variance for a target failure probability. The optimality criterion is derived and some theoretical aspects of the OSMCS estimator are discussed. To demonstrate the applicability and efficiency of the scheme a case study is presented and the implementation issues are also critically discussed.

Keywords: Structural safety, Monte Carlo methods, Wind engineering, Stratified sampling, Variance reduction, Nonlinear modeling.

The Importance of Maintaining the Brazilian Habitat Quality and Productivity Program (PBQP-H) Certification: Analysis and the Impact on the Maintenance of Civil Construction Companies Certification. A Case Study

Matheus Bastos de Almeida, José Cristiano Pereira, and Nelio D. Pizzolato
1 Master in Engineering, Catholic University of Petrópolis, Brazil. E-mail: matheusbaptista.engenharia@gmail.com
2 Doctor in Engineering, Catholic University of Petrópolis, Brazil. E-mail: josecristiano.pereira@ucp.br, nelio.pizzolato@ucp.br

Brazilian Federal Government created the Brazilian Habitat Quality and Productivity Program (PBQP-H), with the aim of organizing the construction sector around two main elements: habitat quality improvement and productive modernization. The program provides alignment of management requirements to the requirements and concepts of ISO 9001:2015 and the compliance with the program is now required in all construction works, not only in the works of buildings. This study discusses the importance of meeting quality requirements in construction work and the challenge of maintaining the PBQP-H certification. The study also shows the critical risk factors in meeting the requirements, maintaining the certification and if it is worth keeping it in a construction company. As a methodological approach an in-depth literature review was made to obtain the critical factors in the compliance with quality requirements used on construction work all over the world. The critical factors obtained in the literature supported the case study, which was conducted in a specific company that adopted the program. The performance of the construction company against the requirements of PBQP-H was evaluated by a quality audit and based on the quality audit result and the information obtained in the literature review the critical factors were listed and the respective actions proposed. Such program brings a positive standardization of the quality requirements in construction companies. As a result of the study, some of the critical factors identified are the lack of inspections on the materials used; material not stored correctly in accordance with the manufacturers and technical standards; services not undergoing checks based on standard procedures and based on technical standards and PBQP-H requirements. The study is important for several reasons. First, risk assessment is gaining importance in all fields and the evaluation of risk factors in meeting PBQP-H has not been reported yet. The study succeeded in identifying the critical risk factors in maintaining a certification and the required responses. Second, the paper shows that the risk factors identified in this study must be controlled to avoid waste and unnecessary costs and preventive actions can be planned to minimize the downtime of the construction work and delays. As a conclusion, maintaining the certification and compliance is a challenge for construction companies all over the world. However, when the risk factors are known and risk responses correctly incorporated in the company’s daily routine, they bring significant improvements and waste/cost avoidance. This study is important for engineers, professionals and companies working in construction field.

Keywords: Quality management system, Quality, Quality system certification, Construction sector, pbqp-h, Civil engineering.
Jing Wu
Department of Electrical Engineering, Technical University of Denmark, Denmark.
E-mail: jinwu@elektro.dtu.dk

Safe operations and adequate maintenance are two main means to achieve reliable production and reduce downtime of a plant. In a good manner, operations are the customer of maintenance, and maintenance is the service provider. However, in reality, the tasks of operations and maintenance are carried out by two different groups so that the close relationship between the two tasks is split.

In this paper, this challenge is handled by a proposed integrated functional modelling framework. In this framework, the Multilevel Flow Modelling (MFM) method with its cause-consequence reasoning rules is used. The qualitative relationship distribution between operations and maintenance can be established by using a distributed qualitative evaluation method based on the function states of the system. In addition, these relationships are visible for both groups and utilize the detected information in the early stage of the development of the unpleasant scenarios to improve the situation awareness, and prevent the undesired emergency shutdown from both perspectives of operations and maintenance. Consequently, it can reduce production loss.

A case study of operations and maintenance of a seawater injection system is carried out and shows the industrial applicability of the proposed framework. The case study strongly reveals that there is a highly close relation between operation and maintenance for ensuring the system working properly. It demonstrates that the proposed integrated framework is not only able to support operational tasks but also for the maintenance tasks by including relevant maintenance information of the system. The results show that it can potentially help with decreasing downtime of the system.

Keywords: Maintenance, Operation, Safety, Functional modelling, Decision-making, Process systems.

Cecilia Lazar1, Martin Gagnon2 and Georges Abdul-Nour3
1University du Québec à Trois-Rivières, Canada.
E-mail: Cecilia.Lazar@uqtr.ca
2Researcher at Hydro-Québec’s research institute (IREQ), Canada.
E-mail: gagnon.martin1@hydroquebec.com
3Professor at the department of Industrial engineering, University du Québec à Trois-Rivières, Canada.
E-mail: Georges.Abdulnour@uqtr.ca

A Hydraulic Power Generator unit can be designed to provide base load or to be used in peaking mode. Operation in peaking mode is more demanding and will influence not only the Generator and turbine but also the Hydraulic Passages. A unit operating in peaking mode but not designed for it might need supplementary maintenance that will influence both its profitability and the portfolio business case. For an existing unit designed for base load but submitted to peaking mode, the impact of increased maintenance costs on the project profit and production price was studied. The techno-economic analysis reveals that there is a critical point beyond which the supplementary load generated will make operation in peaking mode unprofitable. The results indicate that to build a profitable portfolio, it is crucial to make an informed decision concerning the supplementary load imposed on a Hydraulic Power Generator.

Keywords: Peaking, Balancing, Critical point, Renewable, Hydraulic passages, Maintenance costs, Profitability.

Mohammed Alotaibi4 and Matthew Revie5
Management Science, University of Strathclyde, 16 Richmond St, Glasgow G1 1XQ, United Kingdom.
E-mail: 4mohammed.alotaibi@strath.ac.uk, 5matthew.revie@strath.ac.uk

Asset Integrity Management (AIM) plays a significant role in keeping complex ageing assets, such as oil and gas plants, power stations, manufacturing plants operating safely and productively. Many assets are now in a critical stage of life and new approaches to monitor and improve assets’ performance are required. We present a systematic monitoring method for improved efficiency and effectiveness of the plants’ assets; through a comprehensive data analysis based on 12 factors related to 5 underlying pillars as illustrated in Figure 1. These pillars and factors have been identified from an extensive review of academic literature and organizations’ publications which focus on AIM programs. We
integrate the pillars within one monitoring model such that asset owners can measure AIM performance through key performance indicators (KPI) and identify pitfalls/gaps in each pillar for improvement and enhancement opportunities. The core idea is integrating all AIM’s pillars in one method and measuring the performance as one indicator, as well as each individual pillar’s performance. To measure each pillar performance, its each element’s performance has to be computed first. We propose using a Multi Attribute Value Analysis (MAVA) approach to scoring and weight- ing the individual pillars and overall performance. We pro- pose that the method is regularly applied to ageing assets to identify weaknesses early. We expect that asset owners or operators will oversee the proposed approach in order to gain a bigger picture view of the asset performance, identify poor performers and develop a remedy to close gaps before getting poorest; which can draw more attention to improve assets from several aspects.

Keywords: AIM, MCDA, Asset integrity management, KPI, Key performance indicator, Equipment lifecycle, preventive maintenance, MAVA, Attribute value analysis.

Maximizing the realization of value from physical assets through asset management is a contemporary approach to support the achievement of organizational goals. As conse- quence, organizations have placed maintenance as a strate- gic function to deliver business outcomes. The develop- ment of appropriate failure management policies for fail- ure prevention is essential but also a challenge for main- tenance planning. In this context, this paper proposes a method to support the failure management policy selection in asset management based on the exploratory cluster anal- ysis technique. The proposed method comprised three sec- tions: acquisition of the physical asset performance data, cluster analysis, and selection of the failure management policies. Criticality aspects supported the definition of the criteria and scales for evaluating the performance of physi- cal assets and the composition of the dataset. Then, the dis- tance measure and agglomeration schedule were defined for the application of the cluster analysis. From the set of formed clusters of physical assets, it was assigned an overall failure management policy to each cluster based on their internal homogeneity assessment and the context of the organization. The proposed method is demonstrated through a case study in a maintenance manage- ment policy selection of a Brazilian hydroelectric power plant. The results obtained show that the method can support organizations in the selection of appropriate failure management policies according to determined groups of physical assets.

Keywords: Asset management, Maintenance, Failure man- agement, Cluster analysis, Machine learning, Hydropower plant.
The idea of the fail-aware concept is to detect degeneration of a device and act before a failure occurs. This turns a potential failure into a maintenance action. Fail-aware reflects the health status of a device and is part of a prognostics and health management (PHM) system.

In order to detect drift of electrical parameters of semiconductor devices, we use data from stress tests, like the high temperature operating life test (HTOL). At the HTOL test devices are electrically tested, then put to stress, tested again, and put to stress again. This is repeated until the required stress time is completed. We use the data from these electrical tests and correct them for tester offsets and for the measurement uncertainty. The drift is calculated for each device individually. We model the drift itself as a normally distributed random variable. In that way we are able to calculate the likelihood of a device to drift outside the specification limits during operation and the remaining useful life (RUL).

As an example, an angle sensor may show some drift. This drift can be tracked in the autonomous driving car. Cars have to be built in a way that they are fail-safe, fail-operational, and fail-aware. This affects their architectures, the modules and subsystems used, and the semiconductors that are selected.

The fatigue design of mechanical systems has historically followed a ‘deterministic’ process, therefore for a given set of inputs it will return a consistent set of fatigue life results with no scatter. In practice, the designer applies a safety factor to each input parameter to account for the uncertainty. In comparison, a ‘Probabilistic Fatigue Simulation’ method is ‘stochastic’ in nature.

The inputs parameters are expressed as an expected average and its scatter, according to a given probability distribution. This design process helps to avoid poor in-service reliability whilst reducing over-design. This paper address in detail the three stages of Probabilistic Fatigue and Reliability Simulation:

1. Uncertainty Quantification (UQ) of input parameters
2. Stochastic fatigue simulation of individual components
3. Reliability simulation of the entire system

In order to take advantage of Probabilistic Fatigue Simulation, uncertainties in the input and in the analytical model must be properly calculated. Two types of input uncertainties are considered:

1. Reducible uncertainties (or epistemic uncertainties)
2. Irreducible uncertainties (or aleatoric uncertainties)

Stochastic simulations are performed using the ‘Monte Carlo’ method. A statistical sampling technique known as the ‘Monte Carlo’ method. A statistical sampling technique known as

(1) Optimize the design to achieve the target reliability
(2) Identify potential cost savings by identifying the most influential uncertainties
(3) Provide an optimized maintenance schedule

The objective of the industrial case study is to assess the existence of a location parameter as “minimum resistance threshold”. Indeed, a minimum resistance threshold would represent the minimum value of the in-service duration before any fatigue failure can appear. The consideration of such threshold would be very convenient in case of exten-
Outliers Detection at the Lower Tail of A Small Statistical Sample Originated from Test Results of Strength

Lambert Pierrat1 and Marco Bonato2
1Consulting Engineer, 38610, Givors, France
E-mail: lambert.pierrat@yahoo.com
2Reliability Coordinator, Valeo Thermal Systems, 78322, Le Mans
Saint-Denis, France
E-mail: marco.bonato@valeo.com

In the automotive sector the stress-strength interference approach is commonly used to ensure the reliability of the components during the design validation. In this framework, during the development process, only a limited number of prototypes are tested to estimate their minimum resistance threshold. In order to meet ever-increasing technical and economical requirements (cost and timing), destructive tests are carried out on the smallest number as possible prototypes units, which are assumed to be representative of the overall serial population. The minimum resistance threshold is estimated as a random variable resulting from experimental sampling. Its mean value and the coefficient of variation are affected both by the small number of devices tested (3, 5, 10) and by the possible appearance of values considered abnormal (outliers). Indeed premature failures may occur as the result of the not yet optimized manufacturing process. Under these conditions, a classical statistical treatment of the results encounters serious limitations, because any outlier within the small sample size must first be detected. Then, the further reduction of the samples makes the outliers detection process shift influencing the “minimum threshold resistance” of the product.

Keywords: Fatigue, Reliability, Uncertainty Quantification (UQ), Probabilistic design, Design Of Experiments (DOE), Weibull analysis.

Faster and More Accurate Industrial Reliability Predictions from Data Mining Using AI Methods

Philippe Goge1 and Murali Krishnamoorthy2
1Reliability and Data Science, Valeo Thermal Systems, La Verrière, France
E-mail: philippe.goge@valeo.com
2Reliability and Data Science, Valeo Glands, Chennai, India
E-mail: murali.krishnamoorthy@valeo.com

Contributions to 31th European Safety and Reliability Conference, Angers, France, 19 – 23 September 2021 are to be in American English.

The predictive reliability estimation of industrial components is a key for many projects into an accelerated and quicker industrial process. The main goal of this presentation is to show by real examples how data mining strategy can support, improve and accelerate this predictive reliability approach. Agility of such approach will be demonstrated through new and complementary competences needed for implementing such modern techniques. Data mining is the process of generating insights in large data sets involving methods at the intersection of data science (meaning artificial intelligence), statistics, and database systems. This trend has become unavoidable and touchable tendency in the framework of big data and Artificial Intelligence. The presentation will highlight several examples of use cases in the automotive industry dealing with data mining and predictive reliability. Machine Learning or Deep Learning algorithms or models will be used in order to manage high volume of data in short time. Natural Language Processing can be used in order to extract knowledge from unstructured database. It means that even a weird or complex document or record can become an asset and will contribute to predictive reliability assessment. By the way, the presentation will show how these complex and mathematical approaches can be shared within a worldwide company and distributed to
all contributors to project development. The way to make such approach popular and “easy to use” has a wide contribution to such deployment and success.

Keywords: Data Mining, Artificial Intelligence, Machine learning, Reliability.

WEI1: 741 09:50 hrs

Stratégie Et Analyses : Comment Anticiper L’augmentation de La Durée Des Périodes Garantie?
Caroline Ramus1 and Lavanya Bonvin2
1Sernovi
2Stellantis

Garantir la durabilité des composants d’un système est une activité stratégique pour les entreprises des secteurs industriels clés, comme celui des transports. Les enjeux sont doubles : impact économique et image de marque. En effet, un manque de maîtrise de la fiabilité d’un produit peut entraîner des coûts importants.

Session | [WEI1]—Electromagnetic Risk Management
Day/Date/Time: Wednesday, 22 Sep. 2021/08:30–10:10 hrs
Venue | GIFARD

WEI1: 154 08:30 hrs

A State-of-the-Art Review on IC EMC Reliability
Jaber Al Rashid1, Mohsen Koohestani2, Laurent Saintis1, and Mihaela Barreau1
1Université d’Angers, LARIS, SFR MATHSTIC, F-49000 Angers, France.
E-mail: jaber.rashid@univ-angers.fr, laurent.saintis@univ-angers.fr, mihaela.barreau@univ-angers.fr
2Départ. Electrical and Control Engineering, École Supérieure d’Électronique de l’Ouest (ESEO), Angers, France; Institut d’Électronique et de Télécommunications de Rennes (IETR), Université de Rennes 1, Rennes 35042, France.
E-mail: mohsen.koohestani@eseo.fr

Electromagnetic compatibility (EMC) of integrated circuits (IC) should be within the desirable level for maintaining the functional safety and reliability of electronic systems in different complex automotive and aeronautical applications. Throughout the operational lifetime of ICs, harsh environmental conditions including extreme high or low temperature, humidity, shock, and stress tend to cause intrinsic physical degradations, which results in significant variations of long-life EMC performance of IC devices. Consequently, ensuring along with maintaining electromagnetic robustness (EMR) and integrating IC reliability throughout their whole lifetime period is a key challenge that needs to be addressed. The purpose of this paper is to conduct a comprehensive state-of-the-art study on developing accurate immunity and emission models of ICs focusing on quantitative evaluation of experimental characterization based on various IC EMC measurement methods under various ageing accelerated life tests. Producing accurate transient EMC models help not only estimate EMC immunity and emission levels of ICs but also allows determining different failure types and mechanisms due to radio frequency disturbance when applied to IC model structures. This paper presents a few recent researches on the conducted pulse immunity as well as emission models for ICs based on the IEC standard models, showcasing the electric fast transient (EFT) simulations and measurements applied on different IC pins considering the ageing impact. Previous studies demonstrated the importance of the ageing on the EMC performance of ICs depending on the ageing stress parameters. Future prospective of the current study would involve proposing and implementing predictive reliability model for the IC during its entire lifetime under accelerated life tests.

Keywords: EMC, Electromagnetic robustness, Reliability, Integrated circuits, Conducted immunity and emission model, EFT.

WEI1: 428 08:50 hrs

Peter – A Pan-European Training, Research and Education Network on Electromagnetic Risk Management
Davy Pissoort
Department of Electrical Engineering, M-Group, KU Leuven Bruges Campus, Bruges, Belgium.
E-mail: davy.pissoort@kuleuven.be

Sophisticated electronic technologies are increasingly used in mission- and safety-critical systems where electromagnetic interference (EMI) can result in substantial risks to people and the environment. Currently, EMI engineering follows a rule-based approach, which is unable to cope with complex modern situations. This rule-based approach, during the design stage, guidelines are used, which result in the application of a set of mitigation techniques, which are verified in the finished product against standards. This rule-based approach is costly, but with no guarantee of the required performance. This is particularly so for sensitive medical applications or the fully autonomous systems that are becoming ever-more common in our society. What we need is a risk-based approach, which is what PETER1, the Pan-European Training, Research & Education Network on Electromagnetic Risk Management, will provide. PETER is training 15 young engineers in topics related to the development of high-tech systems that maintain reliability and safety over their full life-cycle, despite complex EMI, such
as in hospitals or transport systems. This is achieved using best practices and state-of-the-art EM engineering, reliability engineering, functional safety, risk management and system engineering, to create the risk-based EMC approach.

Keywords: Electromagnetic interference, Electromagnetic disturbances, Functional safety, Risk management, Electromagnetic resilience, Risk-based approach.

Assuring Shielded Cables as EMI Mitigation in Automotive ADAS

Oskari Leppäaho1, Mark Nicholson2, Frédéric Lafon1 and Mohammed Ramdani3

1 VALEO GEEDS, 2 rue André Boulle, Créteil, France.
E-mail: oskari.leppaaho@valeo.com
2 Dept. of Computer Science, University of York, Deramore Lane, York, UK
3 ESEO – IETR, 10 Boulevard Jeanneau, Angers, France

Shielded cables are an important mitigation for electromagnetic interference (EMI) in high-speed data systems. In the automotive domain, one use for them is to transmit image data from a front camera to an advanced driver assistance system (ADAS) controller. Some ADAS functions have implication for human safety and thus place extra requirements for the design of the transmission path including its resilience to EMI.

This paper presents a case study of an automated lane centering (ALC) system with the above-mentioned shielded cable use case. The study starts from a National Highway Traffic Safety Administration (NHTSA) concept level assessment. Subsystem components are then separated and a physical realization derived. Goal Structuring Notation (GSN) is used to present EMI assurance scenarios over the safety requirements. First, the ability of a shielded cable reliability argument to cover the derived safety requirements during different operating scenarios is studied. It is found that relying on reliability alone, it is challenging to fulfill all the safety requirements. To overcome this challenge, an alternative systems safety based method is studied.

Keywords: EMI, Shielded cable, Functional safety, Automotive, Lane centering system, ADAS.
Evaluation of EMI Risks

Frank Sabath
Director, Bundeswehr Research Institute for Protective Technologies and CBRN Protection, Humboldtrasse 100, 28333 Munster, Germany.
E-mail: FrankSabath@bundeswehr.org

The Electromagnetic Interference (EMI) Risk is defined as a possible EMI scenario with the possibility that an EMI event causes an effect which has a negative consequence on the functional safety and/or the main functionality of an electronic system. The main task of risk assessment is to classify identified risks (including their impact and probabilities of occurrence) in: (1) risks that can be tolerated and do not require risk mitigation, (2) significant risk which cannot be taken easily and therefore require further analysis and tailored mitigation measures and (3) risks that are not tolerable and must be subjected to risk mitigation (avoidance, mitigation, ...). In addition, the risk assessment should provide the basis for prioritizing necessary risk management measures.

Regarding the nature of EMI risks they are usually evaluated by the three risk indicators: (1) extent of the impact or severity of the caused consequences, (2) probability of occurrence and (3) chance of detection. Due to the lack of historical experience with deliberately induced electromagnetic influences in the case of EMI risk analysis, the probability of occurrence of the considered hazards (EMI environments) can only be limited or not quantified at all in the form of a decidedly determined percentage number. In most cases it is therefore more practicable to indicate the probability of occurrence employing probability categories. These are the result of subjective evaluation by experts and are less suitable for pure product formatting. In many cases it is difficult to express the caused damage of and the negative impact on the main functionality in a monetary value. Thus, the monetary value does not always reflect the severity of the damage. Therefore, the severity of EMI caused consequences is evaluated using severity categories ranging from undisturbed over severe (reduced efficiency) to catastrophic (loss of system).

This contribution explains how an EMI risk that is characterized by the three risk indicators can be mapped to five risk categories by the risk cube method and the risk graph method. The application of those evaluation methods on EMI risks as well as the discussion of their strength and limitations results into the recommendation that the risk graph method is best suited for evaluating EMI risks.

Keywords: Electromagnetic Interference (EMI), Risk evaluation, Risk matrix, Risk graph, Risk priority index.

Evaluation of the Resilience of the Baltic Power System When Operating in Island Mode

Dmitrijs Guzs ¹, Andrejs Utans ² and Antans Sauhats ³
Institute of Power Engineering, Riga Technical University, Riga, Latvia.
E-mail: ¹dmitrijs.guzs@ast.lv, ²utans@eef.rtu.lv, ³sauhatas@eef.rtu.lv

The power system of Baltic States is undergoing a radical transformation. An intention to achieve a substantially higher share for renewable energy sources, going along with displacement of traditional generation sources that no longer conform to environmental requirements, will lead to a major structural changes of the power grid. These changes will take place simultaneously with desynchronization of the Baltic power grid from the Unified Power System of Russia and synchronization with the European Network of Transmission System Operators power system. It is expected that existing and future planned transformations may pose additional challenges to system operation, particularly, when system is exposed to extreme events. In this paper we evaluate an effect, the future planned configuration of the Baltic power grid has on system resilience.

A practical method of evaluation of the system resilience when transiting from undisturbed state to a degraded one is presented in the paper.

Keywords: Resilience, Power grid, Natural gas grid, Frequency response, Synchronous condenser.
Comparative Evaluation of the Reliability and Vulnerability of Electrical Networks with a High Share of Renewable Generation
Jesus Beyza and Jose M. Yusta
Department of Electrical Engineering, University of Zaragoza, Spain. E-mail: jbeyza@unizar.es, jmyusta@unizar.es
The uncertainties associated with renewable energies can have a significant impact on the security of power systems. To address this problem, this article studies the effect of renewable sources on the reliability and vulnerability of systems with a high share of renewable generation. Different reliability and vulnerability indices are calculated using a cascading failure approach. The simulations show that the integrated system with renewables is less reliable and more vulnerable than its purely thermal counterpart. These conclusions highlight the importance of analyzing the operational security of infrastructure from both perspectives.

Keywords: Cascading failures, Critical infrastructures, Power systems, Reliability, Renewable energies, Robustness, Vulnerability.

Modeling Environment Dependency in Partially Observable Markov Decision Processes for Maintenance Optimization
Ragnar Eggertsson, Rob Basten and Geert-Jan van Houtum
School of Industrial Engineering, Eindhoven University of Technology, P.O. Box 513, 5600MB, The Netherlands. E-mail: R.A.Eggertsson@tue.nl
Partially Observable Markov Decision Processes (POMDPs) are studied in the maintenance literature because they can take uncertainty of information into account [1–4]. This uncertainty may, for instance, arise from imperfect information from a sensor placed on the equipment to be maintained. Examples of such system-sensor pairs are an engine with a temperature sensor, ball bearings with a vibration sensor or a heating, ventilation, and air conditioning (HVAC) system with a temperature sensor. Our research into environment dependent POMDPs is motivated by HVAC systems used in trains. Their functioning is crucial during hot summer months, as carriages with failed HVAC systems cannot be used during this period. Hence, from a resilience standpoint it is important that HVACs are maintained effectively to ensure mobility around the country. Failures of an HVAC system are obvious in the summer and winter when its functionality is needed to keep the temperature stable. However, failures also occur in the fall and spring, but these failures are not as obvious from the temperature read-outs as the failures in summer and winter. This setting can well be modeled as a POMDP since the temperature read-out does not give complete information on the current state of the system. We model the following three actions: an inspection with incomplete information, a perfect inspection, and a maintenance intervention. To this model, we add a Markovian environment, giving rise to a model in which environment dependent partial observations, degradation and costs are included. For this model we show that an environment dependent 4-region policy is optimal. In other words, adding the environment preserves most of the properties of the original model. This contributes to the literature, as the preservation of properties will also hold when adding environment to other POMDP models. We further perform numerical experiments that lead to interesting insights.

Keywords: Condition-based maintenance, Incomplete information, Environment dependence, Markov decision process, Partial observability, Inspection planning.

Interactive Method of Knowledge Elicitation and Simulation: Heuristic-Based Restoration Planning of Water Supply Systems
Taro Kanno1, Kento Wakayama1,2 and Yuji Kawase2
1 Department of Systems Innovation, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan. E-mail: kanno@kip.t.u-tokyo.ac.jp, wakayama.k@ist.t.u-tokyo.ac.jp
2 METAWATER Co., Ltd., 1-24 Suido-cho, Kanda, Chiyoda-ku, Tokyo, Japan. E-mail: kawase-yuji@metawater.co.jp
Water supply systems are considered critical infrastructure, and the effectiveness and efficiency of their post-disaster restoration vastly contribute to the resilience of society. Simulation-based optimization using the genetic algorithm (GA) and machine learning (ML) has been widely applied to optimize the restoration planning of such critical infrastructure. However, these methods face challenges of interpretability and explainability. A heuristic-based algorithm reflecting the empirical rules of experts in restoration planning is a promising alternative because the result can be explained and justified in terms of these rules. In addition, the compu-
In times of stress, maintain security of supply, and accordingly important. One way for being able to withstand systemic risks making concepts of resilience ness. A system of highly cross-linked components is especially prone to systemic risks making concepts of resilience accordingly important. One way for being able to withstand in times of stress, maintain security of supply, and promote adaptive and anticipative capabilities, is to establish early warning capabilities. As cities are complex and rather chaotic socio-technical systems reigned by randomness, the caused parametric uncertainties challenge modeling approaches that are intended to support robust decision-making. Sophisticated methods based on artificial intelligence can play an essential role in this case, as they perform well on highly complex environments and large data set.

To study resilience, the urban area is split into zones where the city’s state is determined by the states of these zones and the state of a zone is characterized by the criticalities of infrastructures accommodated there. Considering criticality as an atomic building block for urban performance assessments, this paper proposes a zone-based state forecast methodology by applying deep convolutional neural networks for learning state evolution that is influenced by non-linear demand dynamics. Furthermore, a case study is presented that applies agent-based simulations and underlines the relevance of deep learning approaches for Smart City early warning systems.

Keywords: Water supply system, Restoration planning, Genetic algorithm, Heuristics, Knowledge elicitation.
lates all legal safety requirements for machines and working safely with machines. Each of the parts provides a relevant viewpoint for robot-safety and together they provide the basis for a holistic analysis of safe working with robots. With this scientific framework GRIP can operate as a 360° diagnostic tool for the safety assessment of HRI applications on the work floor.

Keywords: HRI, Occupational safety, Robots, Machine directive, Storybuilder, Risk analysis.

WEIK: 393 09:50 hrs

A Review of Risk Control Regulations and Practices on BPA in the EU and China

Yujie Liu1,*, Ya Chen1,2, Olivier Salvi1,*, Zakaria Maazou1,*, Marguerita El Boustani1 and Yan Zhao1,2

1Beijing Municipal Institute of Labour Protection (BMLP), China. E-mail: 17479811989@qq.com, 13810035481@163.com, 2yujiqliu@bjmlp.com

2INERIS DEVELOPPEMENT, France. E-mail: olivier.salvi@ineris-developpement.com, zakaria.maazou1198@gmail.com

Keywords: BPA, Risk control, Occupational safety, Comparison between China and Europe.

WEIK: 401 09:10 hrs

The Emergence of Netcentric Principles in Dutch Safety-Experts Networks During the Covid Crisis

Coen van Gulijk

TNO Healthy Living, The Netherlands; School of Computing and Engineering, University of Huddersfield, UK; Safety and Security Science, TNO Delft, the Netherlands. E-mail: coen.vangulijk@tno.nl

The paper reports how an investigation into the experiences of safety experts and practitioners in the Covid crisis led to discussions about netcentric working systems. As experts struggled with a wide spectrum of counter-measures they became heavily dependent on personal, professional and digital networks. The information gathered from networks was combined with their personal training and experience to design local measures for combating Covid. The method of working echoes an earlier observation that netcentric working methods are becoming the norm in Dutch expertise-networks. However, current networks are not yet optimised for rapid information sharing and, it makes sense to consider more professional ways of utilizing networks. This work reports about the initial investigations and provides a conceptual design for a netcentric approach to in safety networks.

Keywords: Covid, Safety experts, Netcentric working, Conceptual architecture, Safety enterprise-architecture.

WEIK: 578 09:30 hrs

Smart System for Worker Safety: Scenarios and Risk

Francesca Santucci1,*, Roberto Setola1,2, Ernesto Del Prete2,*, Fabio Peraldi1,2 and Maria Grazia Gnoni1

1Complex Systems and Security Lab, Università Campus Bio-Medico di Roma, Italy. E-mail: 1ssantucci@unicampus.it, 2f.santucci@unicampus.it, 3r.setola@unicampus.it

2INAIL, Italy. E-mail: 1r.setola@unicampus.it, 2fperal@unicampus.it, 3e.delprete@unicampus.it

3Dipartimento di Ingegneria dell’Innovazione, Università del Salento, Italy. E-mail: maria.grazia.gnoni@unisalento.it

The introduction of IoT (Internet of Things) in work environments has the potential to revolutionise the industrial scenario. Among others, IoT technologies have the capability to innovate the customer experience, to improve the effectiveness and accuracy of the process, to identify in the early stages possible problems and/or defects, to enhance the efficiency and the sustainability of the activities. Moreover, IoT can dramatically improve the safety of workers, allowing to assess the psycho-physical state of the workers, the effectiveness and the correct use of the safety devices and the status of the environment, with the capability to
provide on-line and in the field assessment in order to improve the situational awareness. In this paper, we will illustrate the main uses of such technologies in the OSH framework providing a taxonomy in terms of purpose and typology of sensors (either worn or environmental), type of measurements collected and information processing. A specific attention will be posed on the privacy, since the risk of potential remote control of the worker is an aspect that can negatively impact on the adoption of these solutions. Moreover, we will carry out an analysis of the problems related to the use of smart systems at large in the safety framework. Specifically, the paper will analyse the negative consequences that can be induced in the consequence of the employee de-responsibilities and due to the systemic fragility introduced by the cyber security aspects. Finally, using a specific case study, we will provide some recommendations to design an effective and “safe” smart safety environment. In this way the paper provides an overview on the technological solutions that enable cutting-edge applications in the OSH framework.

Keywords: Smart environment, Privacy, OSH, Cyber risk, IoT, Wearable devices.

WE2A: 614 09:50 hrs

The Use of Proportional (Flow) Control Valves in Operating Machinery and Energy Efficiency and Safety
Pirozzi Marco1, Landi Luca2, Di Donato Luciano3,
Tomassini Laura1,4 and Ferraro Alessandra1,2
1INAIL, Via Roberto Ferracci 38/40, Roma, Italy.
E-mail: mpirozzi@inail.it, tdidonato@inail.it, tomasassin@inail.it.
2Department of Engineering University of Perugia Via Goffredo Donna 93, Perugia, Italy.
E-mail: luca.landii@unipg.it

Proportional flow control valves can control flow and they are sometimes pressure compensated and temperature compensated. Proportional valves are particularly suitable for applications where it is necessary to vary the output flow, both during the same process and moving from a process to another. The control of these valves can be obtained by many coils (solenoids), this allows a more accurate regulation of flow. Another advantage is that they allow various speeds achievable by changing the electrical signal without any additional hydraulic components. Proportional controls, used with their respective electronic controls, add a variety of machine cycles, operated at higher speeds, in conjunction with controlled start and stop. The regulation of acceleration and deceleration allows improved cycle times, production speeds of the machine and a stable flow is also obtained. These features make proportional valves particularly suitable also for the design of Industry 4.0 systems. Therefore, Inail and the University of Perugia have begun a research activity aimed at studying the main safety and energy efficiency aspects that must be considered in the utilization of proportional valves within hydraulic systems. In this paper relevant application of those components, first for lifting and operating machines and then for machinery tool sector, has been investigated. Main failure modes and safety issues are presented. The complete risk assessment necessary for possible application in the field of machinery will be carried out in future research activities.

Keywords: Control valves, Safety of machinery, Energy efficiency, Industry 4.0, Component reliability.

WE2A: 037 10:25 hrs

Multicriteria Risk Visualization Tools in Networks of Natural Gas Pipelines
Ramon Swell Gomes Rodrigues Casado1,2, Francisco Filipe Cunha Lima Viana1,2, Lucas Borges Leal da Silva2,3, Marcelo Hazin Alencar4, Rodrigo José Pires Ferreira2 and Adiel Teixeira de Almeida2
1Risk Assessment and Modeling in Environment, Assets, Safety, Operations and Nature (REASON), Universidade Federal de Pernambuco – Recife, Pernambuco, Brazil.
E-mail: ramonswellgrc@gmail.com, filipelima@gmail.com, lborqueolucas@gmail.com, marceloalencar@cdsid.org.br.
2Center for Decision Systems and Information Development (CDSID), Universidade Federal de Pernambuco – Recife, Pernambuco, Brazil.
E-mail: almeida@cdsid.org.br.

The expansion, maintenance, and optimization of pipeline systems that distribute natural gas are essential to meet commercialization demands for various uses of natural gas. Therefore, these are some of the key-factors for this sector that must be attended in order to stimulate growth in investments and to enhance current activities. However, understanding how risk is managed in the decision context must be a focus of particular attention. Thus, recent studies involve multidimensional risk analysis, and this approach deals with physical and operational aspects of natural gas pipeline systems that can lead to accidents with potential for human, financial and environmental losses. In this context, a consistent decision-making process is needed to manage risks in this complex system, and the decision maker’s perception of risk by applying decision models may contribute to prioritizing maintenance actions and improving resource allocation. Therefore, this paper seeks to contribute
Risk Register Database to Improve Organizational Resilience and Knowledge Management

Arto Niemi, Tobias Höbbel and Frank Sill Torres
Department for Resilience of Maritime Systems, Institute for the Protection of Maritime Infrastructures, German Aerospace Center (DLR), Germany.
E-mail: arto.niemi@dlr.de

Risk monitoring is a fundamental part of risk management that allows detecting changes that might affect the risk consequences and their likelihood. To be effective, the process requires storing the risk information into a so-called risk register. This paper presents an implementation that is realized in form of a relational database. We present the complete table schema of the database and discuss what motivated the different features. We believe that certain aspects of our schema improve its application in comparison to related works. A noteworthy characteristic is the separation of the risk scenarios and risk analyses in different tables. This feature relates to the fact that the same scenario can be assessed within multiple analyses, in which individual circumstances may result in different risk levels. Moreover, different analyses can apply distinct risk criteria. Thus, the analysis-specific criterion must be stored in the database as a risk matrix. A risk scenario includes an entity or item that is the subject being considered in that scenario. This subject can be a system or organization or a subpart of a system or organization. Due to this reason, the schema allows a hierarchical categorization of entities. The developed schema also employs ideas from the object-oriented programming approach, which allows entities to inherit already defined risk scenarios. This paper further presents a browser based user interface to access the database.

Keywords: Multicriteria, Natural gas pipelines, Multidimensional risk analysis, Risk visualization, Graphical information, Decision-making.

Cyber Security for Medical Devices from a Risk Management Perspective: A Case Study

Roberto Filippini1, Nina Bierenkowitsch and Mario Schrenk
EBG MedAustron GmbH, Marie Curie Straße 5, Wörther Neustadt, Austria.
E-mail: roberto.filippini@medaustron.at

Today, medical devices are characterized by a significant use of software technologies and increasingly sophisticated interfaces for supervision and control. On the one hand, this broadens the range of applications of medical devices in medicine, while on the other hand, it introduces new failure scenarios, which pose new risks for the patient. A relevant contribution in this respect is attributed to cyber security threats, which may potentially become a risk higher than that of human errors. As it is often the case, any technological advance brings non-trivial shortcomings, which shall be weighed against the benefits. Because of this, the review of the safe and effective use of the medical device versus cyber security has been performed. The outcomes of this review are reflected in the Medical Device Regulation MDR 2017/745 and in the latest issues of medical device standards, including the risk management standard ISO 14971. This paper aims at addressing the cyber security from the point of view of risk management and its impact on the secure and safe design of the medical device. The concepts will be presented using the MedAustron Particle Therapy Accelerator (MAPTA) of Wörther Neustadt, in Lower Austria.

Keywords: Cyber security, Medical devices, Risk analysis, Risk management, Safety, Secure design.

The Aftermath of 26 September 2019 Accident: A Focus on Risk-Related Policy Analysis

Scarlett Tannous1, Myriam Merad1,2 and Jan Hayes2
1LAMSAD, Paris Dauphine University, France.
E-mail: scarlett.tannous@dauphine.psl.eu.
2Myriam.merad@lamsade.dauphine.fr
2Construction Management, RMIT University, Australia.
E-mail: jan.hayes2@rmit.edu.au

The 26 September 2019 industrial accident, at the “Lubrizol” chemical plant and “Normandie Logistique” warehouse in Rouen (France), has urged the authorities to investigate/reconsider the efficiency of some policy assumptions and safety management measures. This study aims to analyze organizational and policy gaps by examining the published official documents and inquiries of this accident. Its method relies on (i) historical review of Lubrizol’s...
past accidents; (ii) stakeholder review through the examination of the Law of 30 July 2003 (theoretical) and the accident’s Learning from Experience (LFE) Report (practical); (iii) organizational analysis through a Strengths, Weaknesses, Opportunities, and Threats (SWOT) model to examine the means used to manage the crisis and prevent risks; and (iv) a policy analysis of the Law of 30 July 2003 to compare the desired practices (in theory) with those adopted (in practice) affecting the involved stakeholders. Results show that repetitive practices and LFEs highlight a poor change management and risk culture; this is coupled with significantly complex stakeholder network, which is hindering an effective crisis management despite several policy evolutions. Further investigations aim to tackle the encountered stakeholder mapping complexity proving a lack of performance efficiency.

Keywords: Policy analysis, Industrial accident, Risk management, Lubrizol fire, SWOT analysis, Chemical industry.

Quantum physics applications in secure communications and high-performance computing are currently receiving a lot of attention worldwide. Huge investments are being made in the field of quantum computing, with major players such as Google, IBM, Intel, Microsoft, etc. competing for commercial solutions. Quantum supremacy or advantage have made the headlines, and are hotly debated. While the operational number of qubits is not yet sufficient to implement a general-purpose quantum computer, it has been suggested by Preskill that systems with a few tens of qubits, called Noisy Intermediate Scale Quantum (NISQ) computers, could be very useful for specific problems/quantum algorithms. They are termed noisy because the qubits are very sensitive to their environment, so that the error rate of qubit operations is still important. A relatively simple meshed architecture is also required in order to be able to address all qubits properly. In this context, Tannu and Qureshi first assessed the reliability of NISQ computers, defining two figures of merit. Because of the significant variations in the error rates of qubits and links, they proposed a variation-awareness to qubit-movement policy in order to improve the overall system reliability. Their approach is based on a shortest-path routing algorithm to transfer information from one qubit to another.

We propose here to apply the formalism of network two-terminal, and more generally k-terminal reliability to the calculation of the probability of qubits association, so that the result is not path-dependent anymore. This calculation can rely on analytical results for already solved generic network configurations, to which the IBM Q architectures have the good taste to belong. We shall apply our methodology to a few such cases. The variability of the error rates can also be included very simply in our approach, in which node and link availabilities may be defined individually. Finally, we shall provide directions for the inclusion of correlations in the error rates.
City Bus Reliability Assessment Based on State Space Models

David Váliš¹, Kamila Hasilová² and Joanna Rymarz³

¹Department of Combat and Special Vehicles, University of Defence, Brno, Czech Republic.
E-mail: david.valis@unob.cz

²Department of Quantitative Methods, University of Defence, Brno, Czech Republic.
E-mail: kamila.hasilova@unob.cz

³Department of Sustainable Transport and Power Sources, Lublin University of Technology, Lublin, Poland.
E-mail: j.rymarz@pollub.pl

The city bus reliability and safety are crucial aspects of their frequent operation. Reliable and safe operation has, apart from others, one important aspect—it does not increase ownership and entrepreneur costs.

We had been part of the assessment team, which was supposed to observe bus operations in a medium size town. We collected records of bus operation, maintenance, failures occurrences, etc. The buses failures were identified up to a subsystem level; therefore, we know which subsystem in a bus had failed. This project lasted for more than six years. Thanks to this, we possess a significant statistical data set, which is very rich in information. As we have records of each event occurrence in terms of date, mileage, fuel consumption, subsystem affected, etc., we do have a vector of more than 20 variables while some are dependent and some independent.

In this paper, we present the data elaboration. There are various approaches possible to model empirical data.

However, thanks to the data form and structure, a suitable approach is time series modeling. Our effort is aimed at initial data mining, basic characteristics modeling, reliability measures estimation, course plotting, and finding correlation amongst respective variables. The data create interesting courses and dependencies, which we would like to develop further. Modeling approach such as time series state space models based on backpropagation Kalman recursor is a suitable tool, which is applied on the data here. The modeling approach has been chosen due to relevance and ideal applicability. We would like to present essential reliability measures, their courses, and developments with potential to their predictions.

Keywords: Reliability assessment, Safety assessment, ROCOF modeling, State space models.
Unsupervised Co-Training of Bayesian Networks for the Diagnosis of Machining Spindle
Mathilde Monvoisin1,2, Philippe Leray3,4 and Mathieu Ritou5,6
1LS2N (Laboratory of Digital Sciences of Nantes), UMR CNRS 6004, Université de Nantes, Nantes, France
2IRIT Jules Verne, Nantes, France
E-mail: mathilde.monvoisin@irt-jules-verne.fr, philippe.leray@univ-nantes.fr, mathieu.ritou@univ-nantes.fr

The objective of Smart Manufacturing is to improve productivity and competitiveness in industry, based on in-process data. Indeed, failures can stop the production for a couple of days and generate costs of non-quality. Failures in industry can either damage the machine or the product being produced. In both cases, the earlier the failure is detected, the lower the impact on production. Thus, monitoring both the process and the machine condition is interesting, due to their potential interactions. Besides, the diagnosis of the nature of the incident is also important, in order to react adequately as fast as possible.

It requires reliable, explainable and understandable models such as Bayesian networks for performing tasks like condition prediction. Bayesian networks can be learned with incomplete data and in a supervised or unsupervised way, which is very useful because the collect of labelled data is costly and sometimes impossible, especially in industry where problems are, moreover, very rare.

In this paper, we propose a generic architecture based on two Bayesian networks and a collaborative learning strategy that improves the condition monitoring of rotating machines in unsupervised context by using information gathered from process monitoring.

Keywords: Industry 4.0, Condition-based maintenance, Process monitoring manufacturing, Machining, Tool breakage, Bayesian networks, Unsupervised learning, Co-training.

Quantitative System Risk Assessment from Incomplete Data
Simon Wilson1, Cristina De Persis2, José Luis Bosque3 and Irene Huertas Garcia4
1School of Computer Science and Statistics, Trinity College Dublin, Ireland.
E-mail: swilson@tcd.ie
2MBDA IT S.p.A, Italy.
E-mail: cristina.depersis@gmail.com
3Department of Computer Science and Electronics, Universidad de Cantabria, Spain.
E-mail: bosquejl@unican.es
4ESA ESTEC, Netherlands.
E-mail: irene.huertas@esa.int

In this work we focus on the use of belief networks as a generalization of a fault tree analysis, where the main interest is in learning about the probability of the top event, and where a fault tree has been constructed that relates it to the occurrence of one or more primary or intermediate causal events. Furthermore, we focus on a common situation where:

1. There is substantial expert opinion, but that constraints on the availability of the experts, or their experience of an elicitation process, means that the elicitation process must be kept simple;
2. There are limited data from past instances of the risky event, meaning that this information must be used to the full but that also there is uncertainty in the risk assessment that must be properly quantified. In other words, typically some of the events in the fault tree are not observed, and which are observed may change from one observation to the next.

The advantages of this approach, in terms of the use of a fault tree and as a way to facilitate a probabilistic risk assessment, are discussed.

The motivating example for this work comes from an application in the space industry. To reduce the creation of space debris, operators are increasingly resorting to a controlled re-entry of satellites and spacecraft once they are no longer needed, with the objective that they will largely burn up in the atmosphere. The re-entry trajectory is designed so that any components that do reach the surface will land in areas of remote ocean, such as the South Pacific. A recent example, and the motivation for this work, is the European Space Agency’s Automated Transfer Vehicle (ATV), built to supply the International Space Station. Other examples of situations where the approach of this paper may be relevant are nuclear power, maritime safety or counter-terrorism.

A panel of experts approach is used to elicit prior distributions on primary event probabilities, which are then updated from data with the usual belief network methodology. We illustrate the approach with the space debris exam-
Failure symptoms of technical complex products are often caused by mixed failure root causes. In reliability engineering, the use of a single Weibull-distribution is the state of the art regarding the description of a single failure mode. In terms of a mixed failure root cause, a mixture of distributions models has to be considered. The subsequently following failure models are state of the art: Compete failure model, Mixed population failure model, Partial population failure model, General failure model. Only the first two models are fundamentally different. The third model is a special case of the second, and the fourth is a mixture of the others. In many cases resulting curve plots of the mixture distributions have been observed, which differ to the just described by a clearly sharper bend between two straight lines. Thus the “compete failure model” does not explain this phenomenon. In some cases, an explanation by the “mixed population model” could be possible, if there are assumptions for inhomogeneous populations. This paper shows the development of a new failure model with respect to a mixed failure root cause. The model considers especially a distribution of different stress levels affecting the components in field. It is based on the “inverse power law" and the “damage accumulation hypothesis". Furthermore, an application case study for the evaluation of the new failure model is shown.

Keywords: Mixed distribution model, Mixed failure root cause, Weibull distribution model, Wöhler lines, Damage accumulation hypothesis, Gradient method.
ing is considered as one of the most critical components in rotating machinery and it is important to monitor its health condition to be able to avoid the upcoming failures, increase reliability, reduce unplanned shutdowns and maintenance costs. Since the vibration signals in bearings have both nonlinear and nonstationary characteristics, neither of time and frequency-domain approaches can provide reliable and accurate RUL prediction results. For this purpose, most research is based on time-frequency representation techniques such as wavelet transform, Hilbert-Huang transform and Short-time Fourier transform. However, these approaches are more popular within fault detection field, while the combination of these methods as an input for health indicator (HI) construction together with RUL estimation approaches for failure prediction have not been studied thoroughly before. In addition, most research are based on online datasets in which the bearings are only degraded by loading factor. This paper presents a framework using empirical wavelet transform (EWT) for fault detection and HI construction combining with Bayesian inference approach to predict RUL of the bearings. The datasets in this paper are collected by performing several accelerated life tests at NTNU. EWT as an adaptive approach has been employed to decompose the signals into sub-bands to extract different features. The features extracted from the sensitive sub-band are then compared using several performance measures. Afterwards, the Bayesian approach together with Wiener process has been applied on the degradation trajectories to predict RUL efficiently and the framework is validated using the collected experimental datasets.

Keywords: Remaining useful life, Empirical wavelet transform, Condition-based maintenance, Bearing, Bayesian inference.

WE2D: 321

11:25 hrs

A Comprehensive Parameter Study Regarding the Neural Networks Based Monitoring of Grinded Surfaces

Marcin Hinz, Lea Hannah Guenther, and Stefan Bracke

University of Wuppertal, Gaußstrasse 20, 42119 Wuppertal, Germany.

E-mail: marcin.hinz@uni-wuppertal.de, lea.guenther@uni-wuppertal.de, stefan.bracke@uni-wuppertal.de

The optical perception of high precision, fine grinded surfaces is an important quality feature for these products. Its manufacturing process is rather complex and depends on a variety of process parameters (e.g. feed rate, cutting speed) which have a direct impact on the surface topography. Therefore, the durable quality of a product can be improved by an optimized configuration of the process parameters. By varying some process parameters of the high precision fine grinding process, a variety of cutlery samples with different surface topographies are manufactured. Surface topographies and colorings of grinded surfaces are measured by the use of classical methods (roughness measuring device, gloss measuring device, spectrophotometer).

To improve the conventional methods of condition monitoring, a new image processing analysis approach is needed to get a faster and more cost-effective analysis of produced surfaces. For this reason, different optical techniques based on image analysis have been developed over the past years. Fine grinded surface images have been generated under constant boundary conditions in a test rig built up in a lab. The gathered image material in combination with the classical measured surface topography values is used as the training data for machine learning analyses.

Within this study the image of each grinded surface is analyzed regarding its measured arithmetic average roughness value (Ra) by the use of feedforward Neural Networks (NN). NNs are a type of machine learning algorithms which can be particularly applied for any kind of analysis based on extracted features. For the determination of an appropriate model, a comprehensive parameter study is performed. The approach for the search of the best algorithm results of being standardized and the concept of the operational design domain has been proposed to define the capabili-
ties of the car’s driving automation system. Autonomous and unmanned ships have similarly been a research item, also since the 1980s, but with a much lower public profile. A main difference between the two types of vehicles is that autonomous ships in most cases will have human supervision and backup control responsibilities. This has led us to suggest the term operational envelope for the ship, instead of operational design domain, and to include the human capabilities in the operational envelope. This paper describes these concepts and the benefits of the operational envelope when dealing with ships.

Keywords: Autonomous cars, Autonomous ships, MASS, Operational design domain, Operational envelope.

Road Marking Characterization for ADAS Machine Vision Reliability

Abdessamad El Krine¹, Joffrey Girard², Maxime Redondin³, Christophe Heinikèle⁴, Aude Steesser⁴ and Valérie Muzet⁴

1 Cerema ENDSUM, 11 rue Jean Mentelin, Strasbourg, France. E-mail: abdessamad.el-krine@cerema.fr
2 Cerema BEE, 23 avenue Amiral Chauvin, Les Ponts-de-Cé, France. E-mail: joffrey.girard@cerema.fr
3 Institut VEDECOM, 23 bis allées des marronniers, mobiLAB, Versailles. E-mail: maxime.redondin@vedecom.fr
4 Cerema ENDSUM, 11 rue Jean Mentelin, Strasbourg, France.

The evaluation of the road markings visibility has been defined according to human needs, but shall now be extended to the needs of vision-based Advanced Assistance Driving Systems (ADAS). Several publications propose minimum levels of daytime or night-time visibility of the road marking and their contrast with the surrounding pavement, to ensure optimum detectability of Machine Vision systems. However, the calculation methodology is rarely indicated (the heterogeneity of the markings is not always taken into account) and very little information about the Machine Vision system is provided. In this study, a daily experiment was conducted on a small dry road section using a mobile retroreflectometer and a vehicle equipped with a Machine Vision system. Several statistical analyses are performed on the collected data at different study scales (punctual or global scale). They show that despite very low levels of marking retroreflection values and visibility contrast ratios, the road marking lines are almost always very well detected by the camera’s algorithm. That demonstrates that the current indicators characterizing the marking visibility according to standards are not enough to fully understand the behaviour of Autonomous Vehicle cameras.

Keywords: Road marking, ADAS vision reliability, Photometry, Detection level, Retroreflection.

Cybersecurity Assurance Challenges for Future Connected and Automated Vehicles

Luis-Pedro Cobos¹,², Alastair R. Ruddle¹,³ and Giedre Sabaliauskaite⁴

¹ Vehicle Reliability Technologies, HORIBA MIRA Limited, United Kingdom. E-mail: Luis-pedro.cobos@horiba-mira.com,
² Institute for Future Transport and Cities, Coventry University, United Kingdom. E-mail: alastair.ruddle@horiba-mira.com
³ Institute for Future Transport and Cities, Coventry University, United Kingdom. E-mail: ad5315@coventry.ac.uk

Increases in the connectivity of vehicles and automation of driving functions, with the goal of fully automated driving, are expected to bring many benefits to individuals and wider society. However, these technologies may also create new cybersecurity threats to vehicle user privacy, the finances of vehicle users and mobility service operators, and even the physical safety of vehicle occupants and other road users. Assuring the cybersecurity of future vehicles will therefore be key to achieving the acceptability of those new automotive technologies to society. However, traditional prescriptive assurance methods will not work for vehicle cybersecurity, due to the evolving threats, through-life software updates, and the deployment of artificial intelligence techniques. Cybersecurity regulations that are goal-oriented and risk-based, like those increasingly used in safety engineering for complex systems, are now mandated in recent vehicle type approval regulations. This results in many new assurance challenges, which will not be limited purely to cybersecurity. In particular, emerging standards have proposed that an assurance case approach should be adopted in relation to cybersecurity. This paper therefore proposes a novel cybersecurity case framework that adapts existing approaches from safety engineering, emphasizes the limitations of the analysis through eliminative argumentation, and merges in the attack-defence tree techniques used in cybersecurity engineering, with the aim of providing a better reflection of the some of the uncertainties in the cybersecurity risk analysis.

Keywords: Assurance, Automated driving, Connected vehicles, Cybersecurity, Risk, Safety, Software updates.
In this article, we will look at some of the potentials within autonomous shipping and discuss how we can ensure resilience. The term resilience is widely used, Woods (2015) discusses four different common usages: (1) resilience as rebound from trauma and return to equilibrium; (2) resilience as a synonym for robustness; (3) resilience as the opposite of brittleness, i.e., as graceful extensibility when surprise challenges boundaries; (4) resilience as network architectures that can sustain the ability to adapt to future surprises as conditions evolve (sustained adaptability). Many factors affect the resilience approaches of the autonomous system, including communication and collaboration between technology and humans. This paper will give an understanding of technological limitations, as well as understanding of operational knowledge applied within shipping today that might be addressed to the autonomous sector. Will the knowledge at a Remote Control Centre be sufficient to recover from an unwanted situation? Will the autonomous system be capable to perform without human interactions? A bowtie methodology will be applied to identify and describe preventive and reactive barriers, which can be used to understand the resilience mechanisms. This paper will point to known operational challenges, focus on the interaction between technology and humans, and elaborate on issues which will be important drivers for increased resilience and a succesful implementation of autonomous maritime transportation systems.

Keywords: Autonomy, Automation, Transport systems, Remote Control Centre, Safety, Resilience.

Energy and Telecommunications Networks

Guillaume Boulmier, Patrick Coudray, Bertrand Decoq, José Sanchez Torres, José Sanchez Vilchez

1 Orange Labs, Châtillon, France. E-mail: guillaume.boulmier@orange.com, bertrand.decocq@orange.com, jose2.sanchez@orange.com
2 EDF Labs, Palaiseau, France. E-mail: patrick.coudray@edf.fr, jose.sanchez-torres@edf.fr

This paper focuses on interdependency between telecommunication and energy distribution networks, both belonging to critical infrastructures as described in [1]. Energy distribution is always behind every single telecommunication network and related equipment. To anticipate power cut or frequency issues, different solutions have been deployed depending on the sites size and importance in terms of hosted network functions: batteries, inverters to generators. From Distribution Service Operator (DSO) perspective, energy distribution networks depend more and more on telecommunication services provided by Telecommunication Operators (Telco) to supervise, monitor and automate processes.

With the digital transformation, the economy across all industry sectors will continue to develop a critical dependency upon telecommunication networks. DSOs have new requirements linked to their deployed networks, but also requirements for new services relying on telecommunication networks capabilities [2]: massive deployment of electric mobility, smart grid, augmented technicians... with a will to manage these services and associated networks. Telecommunication networks are also evolving, new enhanced functions (like Mobile Edge Computing, MEC) are to be deployed closer to customers. Smaller sites will require a better resilience against power cuts than today. In addition, evolution to 5G will draw new challenges as well, because of the inherent complexity of 5G architecture and softwarization paradigms [3].

This paper is the result of a collaboration between energy and telecommunication companies and has as purpose to provide some answers to face these new challenges. The proposed solutions cover both technical and organisational approaches. The technical solutions will rely on new technological paradigms (5G, Artificial Intelligence) [4].
to ensure and improve the resilience of each type of networks and will depend on some proposals of information exchange modes. To put in place these technical solutions, a task force with delegates from DSO and Telco should be built to select the best way to proceed depending on local constraints.

Keywords: Resilience, Systems interdependency, Telecommunication network, Energy distribution network, 5G, Smart grid.

Dynamic Orchestration of Communication Resources Deployment for Resilient Coordination in Critical Infrastructures Network
Khaleed Sayad1,2, Benoît Lemoine1,2, Anne Barros1,2, Yi-Ping Fang1,2, and Zhiguo Zeng1
1Dept. of Infrastructure Innovation and Engineering, Orange Labs Nantes, 2 Avenue Pierre Marzin, 22300 Lannion, France. E-mail: *khaleed.sayad@orange.com, *benoit.lemoine@orange.com
2Chair Risk and Resilience of Complex Systems, Laboratoire Génie Industriel, CentraleSupélec, Université Paris-Saclay, 3 Rue Joliot-Curie, 91190 Gif-sur-Yvette, France. E-mail: *yi-ping.fang@centralesupelec.fr, *zhiguo.zeng@centralesupelec.fr

In modern Critical Infrastructures (CIs) network, Smart Grid (SG) and Information & Communication Technology (ICT) infrastructures ensure security, as well as economic and societal well-being through a variety of services. Modern CIs rely on the fifth generation of mobile communication (5G) paradigm to incorporate new technologies, deliver new sophisticated services and adopt new business models. These models will shift the CI interdependencies towards a new dynamic paradigm where communication resources are deployed within the CIs operational scheme to reach performance and quality of service (QoS) objectives. Network Function Virtualization (NFV), Network Slicing (NS) and Software Defined Networking (SDN) are examples of 5G-enabling technologies used to reach the aforementioned objectives. However, due to the complex nature of CIs and the interdependencies between their components, the shift toward a dynamic operational scheme will increase the vulnerability and exposure to risks, impacting the network resilience. This requires the design of new resilience frameworks that consider the heterogeneity, privacy and self-interest nature of CIs and guarantee reliability and QoS objectives in such a constrained and dynamic environment. To tackle the resilience problem, we propose a framework to dynamically coordinate and manage the deployment of communications resources, based on NFV. This framework will ensure the availability of services, meet performance objectives during disruptive events and overcome constraints of interdependencies and heterogeneity. To illustrate our approach, we formulate the case of maintenance operations as a disruptive event in ICT hosting 5G services.

Keywords: Critical infrastructure, Resilience, ICT, Smart Grid, QoS, 5G, NFV, Optimization.

Towards a Realistic Topological and Functional Modeling for Vulnerability Analysis of Interdependent Railway and Power Networks
Andrea Bello1,2, Zhiguo Zeng1,2, Marc Sango2 and Anne Barros1
1Chair on Risk and Resilience of Complex Systems, Laboratoire Génie Industriel, CentraleSupélec, Université Paris-Saclay, France. E-mail: *andrea.bello@centralesupelec.fr, *zhiguo.zeng@centralesupelec.fr, *anne.barros@centralesupelec.fr
2SNCF Direction Technologies Innovation et Projet Groupe, Innovation & Recherche, Département Physique du Système Ferroviaire, Équipe Sécurité Système, France. E-mail: marc.sango@sncf.fr

Railway systems and power grids are recognized as two of the most important critical infrastructures. The majority of European railway networks are electrified, and power transmission networks represent usually the main power supplier. Railway and power networks share thus a unidirectional interdependency, as the railway network functionality depends on the power network. Due to this interdependency, failures in power networks have the potential of causing vast disruption in the dependent railway networks. Despite this, the issue of modeling interdependent railway and power networks has not been addressed sufficiently carefully in the existing literature. Furthermore, the treatment of cascading failures in power networks and their consequences in railway networks is limited and approximative. In this work, we propose a modeling framework which accounts for more realistic assumptions on the interconnections topology and the cascading failures dynamics. Firstly, we model the interconnections between the railway and external power network by introducing the traction power network, which acts as a bridge between the external power grid and the railway network. Secondly, we model cascading failures in the external and traction power networks with an approach based on the DC power flow model. Thirdly, we suggest a simple approach to estimate the negative consequences on the railway network due to load shedding in the traction power network. Vulnerability analysis is performed to estimate the negative consequences in the railway network due to different failure scenarios in the external power network. Sensitivity analysis on the initial assumptions is also performed.

Keywords: Critical infrastructures, Interdependent networks, Power network, Railway network, Cascading failures, Vulnerability.
A Risk and Resilience Assessment Approach for Railway Networks

Natalie Miller1,2, Yuyap Sutrisaksil1,3, Katja Faiss1,2, Mirjam Feihling-Kaschek1,4, Stephen Crabbe2, Mauro Politiom1,3, Nader Naderpakouh1,3, Sujeena Setunge4,5, Salih Ergün1,4, Alper Kanak1,3,2, Serkan Tanrseven5,6, Alexis Lekidis5, Emmanuel Matsika6, Philipp Sick2,3 and Eros Cazzato7,1

1Agent Based Simulations, Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institute, Germany.
E-mail: Katja.Faiss@ima.uni-stuttgart.de
2Future Mobility Group – NewRail, Newcastle University, UK.
E-mail: mauro.politi@rmit.edu.au,
4R&D Unit, Intracom Telecom, Greece.
E-mail: alper.kanak@intracom-telecom.com
5Agent Based Simulations, Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institute, Germany.
E-mail: ermos.fei@ima.uni-stuttgart.de
6Technology Readiness Level (TRL) of around 5. Within the R&D Unit, Intracom Telecom, Greece.
E-mail: emmanuel.matsika@newcastle.ac.uk
7Safety and Technology Protection Structures, Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institute, Germany.
E-mail: alexios.lekidis@intracon-telecom.com

Railway transportation dynamically performs under complex coherent systems and fail-safe interlocking conditions. Security and safety are the first priorities of this massive intermodal transportation. However, railway systems, like any other critical infrastructure, face many threats that can take not only the form of physical, but may also be cyber or combined cyber-physical threats, since the automated and digital-based technologies in the rail operation may be vulnerable.

For fatigue and wear failures, a stress-based determination of the shape parameters is of importance and thus a stress-based reliability prognosis. The failure behavior of a spur gear at different load levels with torsional vibration excitation is examined and analyzed with the three-parametric Weibull distribution. The distribution parameters are shown for all tested load levels and a 90% confidence interval is given. The failure-free time is another important parameter in the context of fatigue failures. The level of the shape parameters depends on the failure-free time. The shape parameters on different load levels are stress-dependent. The shape parameter decreases with increasing load levels in high cycle fatigue (HCF) area without vibration excitation. The shape parameter remains constant or increases with increasing load levels in low cycle fatigue (LCF) area with vibration excitation. For the failure of tooth fracture, a typical value range of the shape parameter from 1.2 to 2.2 is well-known in literature. The given mean value range for the stress-dependent shape parameter largely coincides with the test results.

Keywords: Risk, Resilience, Risk and resilience assessment, Railway, Safety, Security, Critical infrastructure.

Session [WE2G]—Mechanical and Structural Reliability
Day/Date/Time Wednesday, 22 Sep. 2021/10:25–11:45 hrs
Venue Atrium 3

WE2G: 033 10:25 hrs

Reliability of Spur Gears - Determination of Stress-Dependent Weibull Shape Parameters for Tooth Root Fracture

Axel Baumann1, Jochen Juskowiak2 and Bernd Bertsche3

1Instrumentation and Test Systems, AVL, Deutschland GmbH & ZG TribolTech, Germany.
E-mail: abeumann@avl-united.com
2Powertrain Research and Development, Mercedes-Benz AG, Germany.
E-mail: juskowiak@mercedes-benz.com
3Institute of Machine Components (IMa), University of Stuttgart, Germany.
E-mail: bernd.bertsche@uni-stuttgart.de

For fatigue and wear failures, a stress-based determination of the Weibull shape parameter is of importance and thus ultimately a stress-based reliability prognosis. The failure behavior of a spur gear at different load levels with torsional vibration excitation is examined and analyzed with the three-parametric Weibull distribution. The distribution parameters are shown for all tested load levels and a 90% confidence interval is given. The failure-free time is another parameter of the Weibull distribution. It is the most important parameter in the context of fatigue failures. The level of the shape parameters depends on the failure-free time. The shape parameters on different load levels are stress-dependent. The shape parameter decreases with increasing load levels in high cycle fatigue (HCF) area without vibration excitation. The shape parameter remains constant or increases with increasing load levels in low cycle fatigue (LCF) area with vibration excitation. For the failure of tooth fracture, a typical value range of the shape parameter from 1.2 to 2.2 is well-known in literature. The given mean value range for the stress-dependent shape parameter largely coincides with the test results.

Keywords: Accelerated life test, Gearbox, Failure probability, Weibull distribution, Failure free time, Stress-
dependent weibull parameters, Non-constant shape parameter, Fatigue, Rotational irregularity, Vibration.

WEDG: 272 10:45 hrs

Bending Fatigue Analysis of a Steel Cable on the UCP MEA1000 Machine – A Reliability Case Study
Bruno de Figueiredo Moutinho1, José Cristiano Pereira1a and Ricardo Franciss2b
1Master in Engineering, Catholic University of Petrópolis, Brazil. E-mail: brunodefigueiredo@gmail.com
2DSc in Engineering, Catholic University of Petrópolis, Brazil. E-mail: jocristiano.pereira@ucp.br, rricardo.francis@ucp.br

This paper discusses the operation of the fatigue testing machine for cables and moorings, named MEA1000, which performs fatigue tests by bending of high-gauge steel cables under moderate tension. This machine has an exclusive and pioneering project in Latin America as it is the only one capable of conducting tests with cables up to 76 mm thickness. The machine is installed at the Petrópolis Catholic University, in the Steel Cable Fatigue Testing Laboratory (LEMOC), as the result of an agreement between Petrobras (National Petroleum Agency), Dom Cincinna Foundation, and Petropolis Catholic University. This study analyzes the results obtained in the commissioning test of the MEA1000 machine to obtain information about its functioning, and presenting observations on the steel cable behavior providing a critical analysis of the results about cable performance and its reliability. As a result, obtained through the commissioning test, under detailed observation of the graphs generated from the data, the behavior of the cable on the machine, regarding its resistance to fatigue due to bending force and the contact with the tie components such as pulleys and lever hoist could be evaluated. The behavior of the rope during the cycles is checked.

Keywords: Steel cable, Steel cable fatigue, Fatigue test, Bending fatigue, Fretting, MEA1000 UCP.

WEDG: 362 11:05 hrs

Analysis of the Reliability of Training Helicopters
Mariusz Zajać1, Mariusz Michalski2, Justyna Tomaszewska2, Łukasz Faber2 and Paweł Zajać2
1Air Force Institute of Technology, ul. Kościuszki 6, 01-494 Warszawa, Poland. E-mail: mariusz.zajac@ift.edu.pl
2Military University of Aviation, ul. Dębińska 303 nr 35, 06 – 521 Dęblin, Poland. E-mail: *m.michalski@mil.waw.pl, justyna@ucp.edu.pl, lukaszfaber@wp.pl
3South Air Force Base, Jacewka 73, 88-100 Inowroclaw, Poland. E-mail: pawel.zajac@wp.pl

Providing safe and on-time flight training is one of the most important activities of a university for educating future pilots. It therefore follows that the unreliability of the aircraft participating in the training program is resulted in delays and may also be the trigger for catastrophe. The main aim of the research was the identification of the main caused of failures. It was assumed that the concept of reliability is understood as the probability of the aircraft to fulfill the functionalities as intended. It is also assumed that the object is repairable. As a part of the research, data from the process of operation of the aircraft used in the Military University of Aviation were investigated. The reliability of two types of helicopters Guimbal Cabri G2 and Robinson R44 has been subject of studies. In this publication the intensity of damage, unreliability and reliability of the helicopters in question as a function of time have been calculated. On the basis of the operating and maintenance data, it was concluded that the majority of the incidents were caused by technical failures in the cooling system, fuel system, impossibility to start the engine and damage to the clutch. In helicopters, the airframe itself was also characterized by high failure rate, i.e. problems with the landing gear and damage to the outside of the helicopter fuselage.

Keywords: Reliability of aircraft, Failure rate, Aviation, Human factor, Technical failures, Helicopters.
F(x, θ) = μ + σ \sum_{i=1}^{M} \sqrt{α_i}f_i(x)

Higher is the truncation order M, better is the accuracy of the expansion to reproduce the true variability of the problem. Unfortunately, this contributes to a significant increase of the probabilistic dimension of the problem, and consequently classical uncertainty propagation methods become inefficient, since all of them suffer from the problem of the curse of dimensionality. This problem is amplified if the mechanical model itself is time consuming such in the case of fatigue crack growth. To overcome this problem, an efficient probabilistic method is developed, having as backbone the well-known dimension decomposition technique. The \(k \)-variate approximation of the mechanical responses, constructed in the standard random space, is obtained through a projection on Hermite polynomials \(\{H_i\}_{i=1}^{\infty} \).

\[y_s = y_0 + \sum_{i=1}^{N} \sum_{j=1}^{M} h_i H_i(a_i) + \cdots + \sum_{i=1}^{N} \sum_{j=1}^{M} \sum_{k=1}^{M} \sum_{l=1}^{M} C_{i,j,k,l} H_{ijkl}(a_{ij}) \]

The unknown coefficients \(y_0, a_i \), and \(C_{i,j,k,l} \) are defined as multidimensional integrals, are computed by convenient monomial cubature rules in order to reduce again the number of mechanical model evaluations. A mixed mode fatigue crack growth problem, where some of material properties are spatially varying uncertain parameters, is addressed using the proposed approach. The spatial variability of the mechanical responses defined by the fracture parameters as the stress intensity factors and the bifurcation angle is well established with high accuracy level and a reduced computation cost compared to most existent approaches.

Keywords: Uncertainty propagation, Random field, Dimension decomposition, Monomial cubature, Fatigue crack growth.
as Machine learning (ML), strongly motivates data-driven PdM applications. However, traditional ML struggles with the large amount of data that arrive at high velocity in real-time streams. Facing big data-related issues, Stream learning (SL) is a new learning paradigm that adapts ML to the handling of fast, unbounded, and dynamic data streams. We deem SL suitable for online monitoring and relevant to our need of having incremental, drift-aware algorithms that quickly detect and predict anomalies. Aiming to enhance railway PdM with SL, we propose a complete streaming pipeline for real-time monitoring, anomaly detection, and anomaly prediction. A partial implementation of this pipeline has resulted in an interactive application named InterCE. Preliminary results on two real-world datasets supplied by a French railway company show that InterCE helps to improve the accuracy of the learning process.

Keywords: Predictive maintenance, Monitoring, Stream learning, Machine learning, railway, Human-in-the-loop.

Keywords: Railway, Cyber security, Safety, Approval, Legislation, Standardization.

WE2I: 304 11:25 hrs
Towards a Specified Operational Design Domain for a Safe Remote Driving of Trains
Abhimanyu Tonk1,2, Abderraouf Boussif3, Julie Beugin2 and Simon Collart-Duttelieu1,2
1Institut de Recherche Technologique Railenium F-59300 Farnars, France.
E-mail: 1abhimanyu.tonk@railenium.eu, 2abderraouf.boussif@railenium.eu
2COSYS-ESTAS, Univ Gustave Eiffel, IFSTTAR, Univ Lille, France.
E-mail: 2julie.beugin@univ-eiffel.fr, 3simon.collart-duttelieu@est.toulouse-eiff.fr

In this paper, we extend the concept of the Operational Design Domain (ODD) to the context of railway remote driving in order to guide the safety demonstration process. Mainly, we propose an iterative process to define and to specify an ODD for the railway remote driving based on the operational risk assessment process. The main idea consists in, starting from an initial high-level ODD, including the overall operational environment of conventional in cab driving, iteratively restrict and refine the ODD by exploiting the risk assessment steps (particularly, the risk evaluation and the risk reduction) through feedback loops to the ODD.

Keywords: Autonomous transportation, Train remote driving, Railway safety, Safety demonstration, Operational design domain.

WE2I: 006 10:25 hrs
A Network Connectivity Reliability Estimation Model Based on Light Gradient Boosting Machine
Bang Chen1, Shenghao Zhou2, Houxiang Liu1, Xinpeng Jiao1, Yue Zhang1 and Xing Pan3
1School of Reliability and Systems Engineering, Beihang University, Beijing, China.
E-mail: 1bang@buaa.edu.cn, 2zhoush@buaa.edu.cn, 3zjy194125@buaa.edu.cn, 4qil1410@buaa.edu.cn, 5changxu112708@buaa.edu.cn, 6changxu112708@buaa.edu.cn, 7panxing@buaa.edu.cn
IoE (Internet of Everything) has become an inexorable trend of modern society development, which makes the network systems more and more complex. This also puts forward higher requirements for the security and reliability of complex network systems. Network connectivity reliability is a key index to evaluate network reliability. However, the computation complexity of the traditional exact algorithms increases exponentially with the expansion of network structure. Therefore, a network connectivity reliability estimation model based on LightGBM (Light Gradient Boosting Machine) is developed in this paper. The model takes the network structure sequence, link reliability, source node and target node as input and network connectivity reliability as output, which can realize the fast estimation of network connectivity reliability. A verification experiment is carried out on a data set of 81920 samples, which is obtained by the node traversal method and the inclusion-exclusion principle. The final experimental results also verify the effectiveness of the proposed model.

Keywords: Network connectivity reliability, Approximation algorithms, Machine learning, LightGBM.

Artificial Neural Networks and Differential Evolution for Optimal Maintenance Planning
Jerome Lonchamp and Emilie Dautreme
EDF R&D, 6 Quai Watier, 78401 Chatou, France. E-mail: jerome.lonchamp@edf.fr, emilie.dautreme@edf.fr

More and more complex models are being developed for Engineering Asset Management (EAM) and the current challenge is to develop optimization methods that would help engineers define the optimal maintenance planning. The difficulty has several origins:

(1) Time-consuming computations: realistic asset management models evaluation are usually based on Monte Carlo simulation that may be long to run.

(2) Stochastic process: the underlying objects in an asset management model are failures described as stochastic variables, the goal function is then also probabilistic.

(3) Dimensionality: maintenance optimization may be done on large systems, the controls (dates) are then defined on a large multidimensional space. Therefore, it is likely that the optimization problem meets the curse of dimensionality.

Several methods have been proposed in the past to tackle such maintenance optimization problems. Some proposed methods are based on decomposition algorithms [1] that aim at transforming large problems into several small problems that can be solved easily and exactly. Although very efficient this type of algorithms is based on strong assumptions regarding the dynamic of the studied systems that could be too restrictive. In this contribution we will present a method that uses Artificial Neural Network as a surrogate model of the stochastic code [2] simulating maintenance planning. The goal is to tackle the two first difficulties identified, that is to say reducing the number of code calculations and also capture the stochasticity of the output.

The network is then linked to a Differential Evolution algorithm [3] that is a powerful meta-heuristic for continuous optimization in large dimension, the training data of the NN being expanded throughout the exploration performed by the DE algorithm. Application to several test cases will be presented, from reference analytical problems (Rosenbrock, Sphere or Rastrigin functions) to cases using real EAM models. These tests will show that if the proposed method has some limitations when it comes to solutions in flat or narrow domains (Rosenbrock) its performance is very good on more usual problems (Sphere) even ones with multiple local optima (Rastrigin). This good performance being well translated to real EAM problems.

Keywords: Artificial neural network, Differential evolution, Maintenance, Stochastic optimization.

Reinforcement Learning for Maintenance Decision-Making of Multi-State Component Systems with Imperfect Maintenance
Van-Thai Nguyen, Phuc Do, Alexandre Voisin and Benoît Iung
Université de Lorraine, CRAN, LIMR-CNRS 7039, Campus Sciences, BP 70239, Vandœuvre-lès-Nancy, 54506, France. E-mail: van-thai.nguyen@uni-lorraine.fr, phuc.do@uni-lorraine.fr, alexandre.voisin@uni-lorraine.fr, benoit.iung@uni-lorraine.fr

In this paper we propose an artificial intelligence (AI) based framework for maintenance decision-making and optimization of multi-state component systems with imperfect maintenance. Our proposed framework consists of two main phases. The first aims at constructing artificial neural network (ANN) based predictors to forecast system’s reliability and maintenance cost. The second refers to the use of deep reinforcement learning (DRL) algorithms to optimize maintenance policy which can deal with large scale applications. Numerical results show that ANN is suitable to reliability, maintenance cost forecasting and DRL is a potentially powerful tool for maintenance decision-making and optimization.

Keywords: Deep reinforcement learning, Maintenance decision-making, Multi-state component system, Imperfect maintenance, Optimization.
Predictive Maintenance of Natural Gas Regulators by Forecasting Output Pressure with Artificial Intelligence Algorithms

Amel Belounnasa, Florent Brissaudb, and Papa Faly Bac
Research and Innovation Center for Energy (RICE), GR Tgaz, 1-3 rue du Commandant d’Estienne d’Orves, 92390 Villeneuve-la-Garenne, France.
E-mail: aamel.belounnas@grtgaz.com, bflorent.brissaud@grtgaz.com, cpapa.faly.ba@grtgaz.com

With the emergence of Industry 4.0, smart systems, machine learning (ML) within artificial intelligence (AI), predictive maintenance approaches have been extensively applied in industries for handling the health status of industrial assets. Due to digital transformation towards Industry 4.0, computerized control, and communication networks, it is possible to collect massive amounts of operational and processes conditions data generated from several pieces of equipment and harvest data for making an automated fault detection and diagnosis with the aim to minimize downtime and increase utilization rate of the components and increase their remaining useful lives. Machine learning (ML) techniques have emerged as a promising tool in Predictive Maintenance applications for smart manufacturing.

In the proposed work, we test the recent advancements of ML techniques widely applied to predictive maintenance to forecast natural gas regulators pressure deviations and to predict failures. The data represents about a hundred years of ML and neural networks models are tested to forecast the output pressure of the regulators and to predict the passing over the failure thresholds. Defining the parameters that optimize the prediction of failure while limiting the spurious detections is a challenge that is investigated in the proposed paper.

The deployment of such methods is expected to reduce the preventive and field maintenance operations costs by providing early warning notification and diagnosis of gas regulators issues.

Keywords: Artificial intelligence, Neural networks, Machine learning, Predictive maintenance, Gas transmission.
Keywords: Resilience, Human factors, Critical infrastructure, Nuclear power plant, Petri net.

WE2J: 367 10:45 hrs

Cascading Failure Analysis for Power System Vulnerability Assessment
Blazhe Gjorgieva and Giovanni Sansavinib
Reliability and Risk Engineering Laboratory, Institute of Energy Technology, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland.
E-mail: agblazhe@ethz.ch, bsansavig@ethz.ch

Power systems as a critical infrastructure are an integral part of human society and are therefore of paramount importance to modern life. Vulnerabilities in the system, that are revealed either by accidental or deliberate events, can cause large losses of power supply with severe social and economic consequences. A tool that identifies the vulnerabilities in a power system can provide the operators the means to support a more reliable power system operation. This paper presents a methodology for power system vulnerability assessment that couples an AC based cascading failure simulation model and a meta-heuristic optimization procedure. The objectives of the assessment is to (1) rank the most important branches in the transmission grid, and (2) identify sets of branches if simultaneously tripped will cause the cascade with highest intensity. The first objective is achieved by ranking the criticality of the branches using two criteria (i) the impact that each branch failure has on the DNS and (ii) the frequency of line overload. The second objective is achieved by hard linking an AC based cascading failure simulation model and a meta-heuristic based optimization procedure. The algorithm developed for the purpose of this study is applied to the IEEE 118-bus test system. The results demonstrate the capability of the proposed methodology to identify vulnerabilities in a power system.

Keywords: Power system, Vulnerability, Cascading failures, Power flow, Optimization.

WE2J: 554 11:05 hrs

Gas Network Resilience Enhancement by Quantitative Prioritization of Main Valves for Scada Connection
Vytis Kopustinskas1, Bogdan Vamanu2, Vladislavas Daškevičius3,a and Andrius Dagys3,b
1European Commission, Joint Research Centre, Ispra, Italy.
E-mail: vyti.kopustinskas@ec.europa.eu
2Department of Life and Environmental Physics, ’Horia Hulubei’ National Institute of Physics and Nuclear Engineering, Bucharest, Romania.
E-mail: bvamanu@nipne.ro
3AB “Amber Grid”, Vilnius, Lithuania.
E-mail: av.daskevicius@ambergrid.lt, ba.dagys@ambergrid.lt

The study aims to develop a priority list of main valves of the gas transmission network that should be connected to SCADA for remote monitoring and control. Remotely controlled valves are necessary to quickly localize accidents, minimize methane release into atmosphere and enable rerouting of the gas flow to ensure security of supply. Although the highest system resilience is achieved when connecting all main valves, this process is long and therefore must be prioritized as not all valves have the same importance for the system operation.

The priority list involved development of a multi-criteria decision tool \cite{1} as many different parameters should be considered for connection of a valve to SCADA. Each parameter was quantified on a unified scale and then the total priority score was obtained by applying a specific weighting scheme. The following quantitative and qualitative criteria were used for the ranking: pipeline importance in terms of security of supply \cite{2}; pipeline diameter; type of customers served and demand volumes (protected, industrial); valve accessibility (distance to the roads); land use parameters and hazard zones (forest areas, flood areas, swamps); costs of installation and maintenance; networks topology (number of valves in close vicinity, within 300 meters). These criteria were further developed and applied for the valve topology in QGIS software, obtaining individual scores of some indicators directly from QGIS computational routines.

The final priority list of over 500 valves strongly depends on weights that individual indicators are assigned. The weights were assigned by experts applying expert judgment techniques.

The work presented was co-funded under Horizon 2020 framework by SecureGas project.

Keywords: Gas network, Resilience, Quantitative indicators, Valves, SCADA.
Conceptual Approach Towards a Combined Risk and Resilience Framework for Interdependent Infrastructures

Stefan Schauer1, Martin Latzenhofer1, Sandra König1 and Stefan Rass2
1Center for Digital Safety & Security, AIT Austrian Institute of Technology, Austria. E-mail: 1stefan.schauer@ait.ac.at, 2martin.latzenhofer@ait.ac.at, sandra.koenig@ait.ac.at
2Department of Artificial Intelligence and Cybersecurity, University of Klagenfurt, Austria. E-mail: stefan.rass@aau.at

We describe a combined risk and resilience framework, developed based on a standard risk management process (as proposed for example in ISO 31000) integrating core aspects from resilience management. Furthermore, it focuses on interdependencies among critical infrastructures (CI) in a city and aims at capturing potential cascading effects among CIs caused by a local incident (intentional or random). The application of a stochastic simulation model in this context provides an elegant description of these cascading effects of an incident and enables the overall risk assessment (of that incident) for the entire CI network. To get from incident propagation to the evolution of the resilience, we complement the simulation model by an additional resilience model. For this simulation-aided management of risks and resilience, our framework utilizes game-theoretic optimization to identify the most effective mitigation strategies against the worst-case incident implications. This quantitative decision support for the choice of best actions is made possible by the simulation model, allowing to evaluate the efficacy of different actions for risk and resilience control in a planning phase for an optimal time- and resource investment. Specifically, the use of simulation allows for arbitrarily chosen actions, ensuring that the planning is consistent with feasibility constraints (budget, cooperation of actors, etc.), and leads to understandable and effective preventive and reactive actions. In this way, the developed framework supports municipalities’ decision makers and individual CI operators in assessing their preparedness against specific incidents as well as evaluating novel strategies to improve a city’s risk and resilience management.

Keywords: Risk and resilience framework, Critical infrastructures, Interdependencies, Stochastic simulation, Game-theoretic optimization.
Road traffic will change dramatically, triggered by the development of new technologies and a focus on accident-free driving. It is a race among the car manufacturers to be among the first to develop autonomous vehicles. Several standards for road vehicles require a safety case. A safety case is developed to convince a third party that the vehicle is safe. We suggest that also a “safety case for the public” should be issued to ensure (1) that the public are aware that safety evidence exists, (2) that they are aware of relevant safety aspects when they are passengers and (3) that limitations are transparent and described.

A safety case is too technical for the public, is lengthy and includes confidential information. As a result, the safety case cannot be presented to the public. Trust in this technology is a vital precondition for this adoption. In an earlier paper we have addressed the safety topics of the safety case for the public. These aspects were based on safety standards and a survey including only safety experts. We have made a new survey of 311 passengers and interviewed 18 autonomous bus passengers. Based on this information we have proposed a template for the “safety case for the public”. Using such a safety case will help manufacturers of autonomous vehicles and operators to gain public trust.

Road traffic psychology: That experience is built by agency. How is experience built without agency? And, fundamentally: What about safety?

Keywords: Trust, Safety, Standards, Safety case, Autonomous vehicles.

Traffic psychology: That experience is built by agency. How is experience built without agency? And, fundamentally: What about safety?

Keywords: Digital transformation, vehicle digitalization, traffic psychology, risk perception, risk-taking behavior, safety.
these focus groups can be handled in a self-driving vehicle. Since risk and risk acceptance is an important part of acceptance of self-driving vehicles, we end the paper with a short discussion on how to talk risk with the general public and some preliminary conclusions.

Important conclusions are that the extended TAM model of Venkatesh and Davis is well suited for the TrustMe project. Using this model will help us to categorize and analyses our observations. In addition, it will help us to find new questions and problems to consider. We need to consider both technical and societal risks when construction safe and trustworthy / reliable self-driving busses for public transport.

Keywords: Self-driving busses, Technology acceptance, Trust, Safety.

Session [WE3A]—Risk Assessment
Day/Date/Time Wednesday, 22 Sep. 2021/14:00–15:00 hrs
Venue Plenary Room

WE3A: 397 14:00 hrs

Covid-19 Pandemic: Analyzing Of Different Pandemic Control Strategies Using Saturation Models
Stefan Bracke and Lars Grams
Chair of Reliability Engineering and Risk Analytics, University of Wuppertal, Germany.
E-mail: *bracke@uni-wuppertal.de*

Since December 2019, the world is confronted with the outbreak of the respiratory disease COVID-19. At the beginning of 2020, the COVID-19 epidemic evolved into a pandemic, which continues to this day. Within many countries, several control strategies or combinations of them, like restrictions (e.g. lockdown actions), medical care (e.g. development of vaccine or medicaments) and medical prevention (e.g. hygiene concept), were established with the goal to control the pandemic. Depending on the chosen control strategy, the COVID-19 spreading behavior slowed down or approximately stopped for a defined time range. This phenomenon is called saturation effect and can be described by saturation models. E.g. a fundamental approach is Verhulst (1838). The model parameter allows the interpretation of the spreading speed (growth) and the saturation effect in a sound way. This paper shows results of a research study of the COVID-19 spreading behavior and saturation effects depending on different pandemic control strategies in different countries and time phases based on Johns Hopkins University data base (2020). The study contains the analyzing of saturation effects related to short time periods, e.g. possible caused by lockdown strategies, geographical influences and medical prevention activities. The research study is focusing on reference countries like Germany, Japan, Denmark, Iceland, Ireland and Israel.

Keywords: COVID-19 pandemic, Data analytics, Saturation model. Pandemic growth, Pandemic control.

WE3A: 425 14:40 hrs

A Systemic Approach for Preliminary Risk Analysis of Cybersecurity of Industrial Control Systems
Jean-Marie Flaus and John Georgakis
University Grenoble Alpes, CNRS, G-SCOP, F-38000 Grenoble, France.
E-mail: *jean-marie.flaus@univ-grenoble-alpes.fr, john.georgakis99@gmail.com*

The objective of this communication is to describe a systemic analysis method for carrying out the analysis of cybersecurity risks of installations made up of computer elements and industrial systems control systems. We first recall the principle of systemic risk approaches, specify the context and then detail the proposed method. It is based on a decomposition into interacting systems. For each system, a risk model is produced from a knowledge base. The scenarios are obtained by composition. This approach is illustrated on an example installation. We end by suggesting areas for improvement.

Keywords: Cybersecurity, Systemic, Risk analysis, MITRE ATT&CK.

WE3A: 423 14:20 hrs

Risk Analysis of Emergency Operations in Presence of Limited Prior Knowledge
Xu An and Huixing Meng
State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, China.
E-mail: *huixing.meng@bit.edu.cn, huixing.meng67@hotmail.com*

The risk of emergency operations can lead to the expansion of accident losses. The emergency process can introduce uncertain factors, and the resulting risk can threaten the safety realization of the emergency goal. By considering the characteristics of emergency operations, we proposed a methodology to assess the risk of emergency operations. In the methodology, Bayesian network is applied to capture the risk characteristics in the emergency process. Fault tree is utilized to depict the reason for emergency failure. Fuzzy set theory is employed to determine the prior probabilities of the root nodes in presence of limited prior knowledge. The methodology was applied to the emergency operations in the deepwater blowout accident. The risk-influencing factors of emergency operations and their correlations were identified. In emergency operations, fault tree is used to assess the risk of the lower process.
A Bayesian network-based emergency operation model for the deepwater blowout is developed. The model captures the variability of parameters and simulates the evolution of emergency operations over time, with probabilistic updates based on field observations. The mutual information is also utilized to conduct sensitivity analysis and diagnostic reasoning on the model.

Keywords: Emergency operation, Risk analysis, Fuzzy set theory, Bayesian network.

Session | [WE3B] — System Reliability
Day/Date/Time | Wednesday, 22 Sep. 2021/14:00–15:00 hrs
Venue | Atrium 2

RAM and Importance Measures Analysis of Offshore Drilling Rigs’ Cuttings Dryer
Marta Valentina Clavijo Mena1, Joaquin Eduardo Figueroa Barraza1,2, Luís Felipê Guarda Brauning1,2, Carlos Henrique Bittencourt Morais1,2, Danilo Colombo1,2 and Marcelo Ramos Martins3

This paper presents a Reliability, Availability, and Maintainability (RAM) Analysis and an Importance Measure Analysis of an actual cuttings-dryer system of a drillship operating in the Brazilian Pre-Salt region. The methodology used consists of the development of a functional analysis, in which the technical and operational characteristics of the system were identified, followed by the modelling of the system using the Reliability Block Diagram (RBD) technique. Since traditional RBD’s do not permit the failure-repair transitions analysis, it was necessary to additionally apply the Monte Carlo Simulation (MCS) technique to assess availability and maintainability. Finally, a multattribute Importance Measures analysis was performed, considering five different approaches: Birnbaum, Criticality, RRW (Risk Reduction Worth), RAW (Risk Achievement Worth), and Fussell-Vesely. The analysis shows that the fluid cleaner, centrifuge, and catch tank are the most critical components of the system in analysis. It also indicates that a monthly preventive maintenance should be performed in order to lessen the likelihood of the cuttings-dryer system failing.

Keywords: Reliability, Availability and Maintainability (RAM) analysis, Reliability Block Diagram (RBD), Monte Carlo Simulation (SMC), Importance measures analysis, Offshore drilling, Cuttings dryer system.

WE3B: 378 | 14:20 hrs

Knowledge-Based System Modelling to Enhance Design for Reliability Process: An Application to LNG Industry
Andrea Greco1,2, Irene Gallici1,3 and Armin Narimanzadeh3
1Research, Development & Engineering, Wärtsilä Italy.
E-mail: andreagreco@wartsi.com, irenegallici@wartsi.com
2Gas Solution, Wärtsilä Finland.
E-mail: armin.narimanzadeh@wartsila.com

Modern vessels require integration and interaction of many on-board systems. Adoption of fuel-saving technologies and more demanding environmental regulations are pushing towards increasingly complex and expensive design solutions. This poses several challenges in terms of safety and reliability. In this scenario, modern simulation capabilities play a pivotal role for the analysis and optimization of innovative vessels. Furthermore, a digital environment allows the investigation of failure modes and hazardous situations in place of expensive and time-consuming laboratory tests as well as whenever field data do not ensure proper faults investigation. These aspects make knowledge-based simulation models a supportive tool for Reliability Engineering Experts. This paper describes a proposal to enhance the Design for Reliability (DFR) methodology within product development process relying on system simulation capabilities.

Keywords: System reliability, LNG hybrid vessel, De-carbonization, Smart technology, System integration, Knowledge-based model, System simulation.

WE3B: 482 | 14:40 hrs

Bayesian Cross Entropy Method for Network Reliability Assessment
Jianpeng Chan1, Jason Papaoannou and Daniel Straub
Engineering Risk Analysis Group, Technische Universität München, Germany.
E-mail: jianpeng.chan@tum.de

We propose a modification of the improved cross entropy (ICE) method to enhance its performance for network reliability assessment. The ICE method is an adaptive sampling approach that employs a smooth transition from the nominal density to the optimal importance sampling (IS) density and updates a chosen parametric distribution model through cross entropy minimization (Papaoannou et. al., 2019). The efficiency and the accuracy of the ICE method are
largely influenced by the choice of the parametric model. In the context of reliability of systems with binary component states, the obvious choice of the parametric model is the multivariate Bernoulli distribution. In systems with highly reliable components, the parameters of the Bernoulli model often converge to 0 due to lack of occurrence of failure data/samples. The problem is known as “zero count problem” or “sparse data problem” in the context of maximum likelihood estimation (Murphy, 2012). To circumvent this problem, an accurate yet efficient algorithm termed Bayesian cross entropy (BCE) method is proposed. In this approach, instead of employing a weighted maximum likelihood estimator to update the distribution model, the posterior predictive distribution is derived. The information from the samples generated at the previous levels can be further exploited in BCE through introducing a mixed prior. A set of examples are used to illustrate the efficiency and the accuracy of the proposed method.

Keywords: Network reliability assessment, Importance sampling, Improved cross entropy method, Bayesian analysis.

Condition-Based Maintenance with Functional Modeling: Challenges and Opportunities
Mengchu Song and Xinxin Zhang
Department of Electrical Engineering, Technical University of Denmark, Denmark.
E-mail: meng@elektro.dtu.dk, xinx@elektro.dtu.dk

Practices in the process industry have shown benefits from functional modeling in particular a methodology called Multilevel Flow Modeling (MFM) for corrective maintenance by quickly reasoning out the root-cause of failure and suggesting plausible counteractions to maintain the normal operation. In order to decrease the downtime and reduce the costs, condition-based maintenance (CBM) has also been advocated. With the robust capability of knowledge representation and automated reasoning for complex process systems, MFM has the potential for CBM by representing relevant functions and processing data from condition monitoring, but may need a revolutionary methodology extension from the process level to the perspective of mechanical equipment. This paper goes over the key CBM steps and prevailing CBM approaches, from which the possible opportunities and challenges of applying MFM as the unified knowledge base for CBM are defined. The authors aim to develop a computerized maintenance management system, which will interact with the existing MFM-based reasoning platforms to provide operators an integrative decision support for operation and maintenance.

Keywords: Decision support system, Condition-based maintenance, Functional modeling, Multilevel flow modeling, Condition monitoring, Computerized maintenance management system.

Energy Footprint of a Refractory Lining
Roberta Piccinelli, Alessandra Caccamo and Stefano Moratti
Energy Team SpA, Via Della Repubblica 9, Terrazzo sul Naviglio (MI), Italy E-mail: roberta.piccinelli@energyteam.it, alessandra.caccamo@energyteam.it, stefano.moratti@energyteam.it

In foundry processes, and more in general in the metallurgy industry, refractory materials are used for lining the furnaces: they serve as a thermal barrier between the melting metal and the containing vessel and protect the furnace’s coils of copper wire during the fusion phase. Refractory materials are subject to wear as they deteriorate by reducing their thickness during the furnace functioning and need to be replaced on a regular basis when a “limit thickness” is reached. The procedure of replacement is economically demanding because it requires a long downtime in order to allow the substitution of the lining and the re-heating of the furnace before it can start melting again. At the same time, an excessive delay in the replacement may bring safety issues: as the material deteriorates, cracks due to the extreme wear of the lining may form and a break in the coating could allow the melting metal to reach the copper coils putting the furnace at the risk of explosion.

In some cases, no monitoring system for measuring the thickness of the refractory lining is in place and the decision of changing the coating is left to the expertise of an operator who, based on his experience, decides the right time for the substitution.

In this paper we propose a method for the detection of refractory lining wear based on the signal in the energy profile of a furnace. A time series analysis is conducted by training a data-adapted classifier consisting in convolutional neural networks performing phase classification to unveil the energy footprint of the degradation process in the refractory layer. The proposed method is evaluated on a real industrial case.

Keywords: Refractory wear, Predictive maintenance convolutional neural networks, Phase classification, Time series analysis, Energy footprint.
A Planning Strategy for Maintenance Interventions through this extension new criteria to improve applicability originally presented in Viveros et al. (2020), incorporating tic grouping strategy of preventive maintenance activities prehends a novel integrated approach for the opportunis- strategies on maintenance interventions. Our model com- implementation of a framework for optimizing planning maintenance grouping schemes.

This work also develops an optimization model based on the mixed-integer linear programming (MILP) paradigm for preventive maintenance activities, and the application of time-window tolerances in order to facilitate opportunist maintenance grouping schemes.

This research presents the elaboration and computational implementation of a framework for optimizing planning criteria to facilitate the transfer of knowledge and its maintenance planning, which considers realistic applicabilities, and thus it is considered an important machine learning algorithm. Logistic regression algo- for preventive maintenance activities, and the application of time-window tolerances in order to facilitate opportunist maintenance grouping schemes.

This research aims to formulate a new proposal for efficient maintenance planning, which considers realistic applicability criteria to facilitate the transfer of knowledge and its industrial application, with an approach oriented to the sim- ulation and risk quantification of failure events in complex systems.

Keywords: Preventive maintenance, Opportunistic mainte- nance grouping, Maintenance planning, Mixed-integer linear programming, Complex system.
Optimal Sensor Location in Smart Building to Estimate Occupancy While Addressing Model Uncertainties

Chuhao Jiang\(^a\), Marie-Lise Pannier\(^b\) and David Bigaud\(^c\)

University Angers, LARIS, SFR MATHSTIC, F-49000 Angers, France.
E-mail: \(^a\)chuhao.jiang@etud.univ-angers.fr, \(^b\)marie-lise.pannier@univ-angers.fr, \(^c\)david.bigaud@univ-angers.fr

Nowadays, buildings are responsible for over 30% of society's energy consumption and half of the global electricity demand\(^1\). In order to build a sustainable and integrated energy system, it's crucial to make the buildings more intelligent not only to minimize the energy consumption while ensuring comfort but also to provide ancillary services to the energy market in the future smart energy system for the system operators and balancing party.

The prerequisite for achieving the goal of the intelligent building is data collection. The accuracy, diversity, and non-repeatability of data become the key to this problem, so finding an optimization method to locate different kinds of sensors so as to obtain good data quality and to minimize the sensors number played a prominent role in data collection. This presentation first provide a short state-of-art review for various optimal sensor placement techniques. Based on the literature review, a greedy algorithm relying on the condition number of a Fisher information matrix\(^2\) is presented in the methodology section. It is applied to find the M optimal temperature sensors placement for a typical university lecture room in west of France, for which temperature was computed at several points through energy (EnergyPlus tool) and CFD simulations. In the results section of the presentation, the set of M indoor temperature sensors that bests fit the temperature at T target points is identified. Then, an implicit model linking estimated and real temperature at some target points is designed for N occupancy scenarios. The model related error is estimated between each N cases. Then, using these model uncertainties as well as the estimated temperature at the target points, an artificial neural network is applied to predict the occupancy status (absence or presence of occupants) with a certain level of confidence. Furthermore, a more profound study of variational number (M) of sensors will be addressed to gain insight for prediction accuracy.

Keywords: Intelligent building, Optimal sensor placement, Fisher information matrix, EnergyPlus, effective independence method, Uncertainty analysis.
A Modeling Approach to Consider the Effects of Security Attacks on the Safety Assessment of Autonomous Vehicles – An AT-CARS Extension and Use Case
Timo Frederik Horeis¹, Tobias Kain², Rhea C. Rinaldo³ and Aaron Blickle¹
¹Institute for Quality and Reliability Management (IQZ GmbH), Hamburg, Germany.
E-mail: a.horeis@iqz-wuppertal.de, b.blickle@iqz-wuppertal.de
²Volkswagen AG, Wolfsburg, Germany.
E-mail: tobias.kain@volkswagen.de
³Cyber-Physical Systems, German Research Center for Artificial Intelligence (DFKI), Bremen, Germany.
E-mail: Rhea.Rinaldo@dfki.de
Researchers and developers of autonomous vehicles are facing various challenges ranging from establishing public acceptance to meeting high reliability requirements. These challenges are often faced individually in specific areas, e.g., safety and security, or are addressed separately for each software and hardware component. The applied approaches are delivering single solutions that might not consider the interdependencies between the different areas. Some common interdependencies include, for instance, the safety failure of an element that provides security measures or the safety failure of the system due to a security attack of a safety-related component. Therefore, in this paper, we integrate these ideas based on our previous research into a safety analysis to consider the interdependencies between safety failures and security attacks. In particular, we implement security attack rates into our safety analysis tool, called AT-CARS, and develop failure management strategies to handle these security attacks. Furthermore, we introduce a new component to our modeling approach, the so-called security protection component, which provides security protections for specific components. Besides, a show-case demonstrator visualizes the developed methods and tools.
Keywords: Safety, Security, Analysis tool, Failure management process, Autonomous vehicles.

Analyzing Influence of Robustness of Neural Networks on the Safety of Autonomous Vehicles
Jin Zhang¹,²,³, J. Robert Taylor⁴, Igor Kozin⁴ and Jingyue Li¹,²
¹Computer Science Department, Norwegian University of Science and Technology (NTNU), Norway.
E-mail: a.jin.zhang@ntnu.no, c.roberttayloritsa@gmail.com
²Engineering Systems Design Group, Technical University of Denmark (DTU), Denmark.
³School of Information Science and Technology, Southwest Jiaotong University (SWJTU), China.
⁴Independent consultant and researcher, Denmark.
E-mail: a.jingyue.li@ntnu.no, d.igor.o.kozin@gmail.com
Neural networks (NNs) have shown remarkable performance of perception in their application in autonomous vehicles (AVs). However, NNs are intrinsically vulnerable to perturbations, such as occurrences outside of the training sets, scene noise, instrument noise, image translation, and rotation, or small changes intentionally added to the original image (called adversarial perturbations). Incorrect conclusions from the perception systems (e.g., missing objects, wrong classification, and traffic sign misdetection or misreading) have been a major cause of disengagement incidents in AVs. In order to explore the dynamic nature of hazardous events in AVs, we develop a range of methods to analyze AV safety and security. This work is part of the project and is devoted to analyzing the influence of robustness in the NN-based perception system by using fault tree analysis (FTA). We extend the traditional FTA to represent combinations of failure causes in the multi-dimensional space, i.e., two variables that influence whether the image is classified correctly. The extended FTA is demonstrated on the traffic sign recognition module of AV theoretically and in practice.
Keywords: Safety, Neural network, Autonomous vehicles, Robustness, Failure mode, Hazard identification.
Gas installations in commercial and residential buildings are important equipment that rise quality human lives in residential buildings and enhance production in commercial buildings. However, gas installations using the natural gas or propane-butane in commercial and residential buildings are often the sources of accidents. These accidents are accompanied by human losses, damages on properties and harms on environment. The paper shows the examples of selected accidents, proposes countermeasures for prevention and summarizes demands on response to accidents.

Keywords: Gas installations, Commercial and residential buildings, Accidents, Prevention, Risk, Safety.

Session: WE3F: 140 14:00 hrs

Risks in the Operation of Gas Installations in Commercial and Residential Buildings

Pavel Rusek1 and Dana Procházková2
1 Rusek Consult s.r.o., 733 51 Debej Lutýné, Czech Republic. E-mail: rusekconsult@gmail.com
2 Department of Energy, Czech Technical University in Prague, Technická 4, 166 00 Praha 6, Czech Republic. E-mail: Danu.Prochackova@fme.cvut.cz

Gas installations in commercial and residential buildings are important equipment that raise quality human lives in residential buildings and enhance production in commercial buildings. However, gas installations using the natural gas or propane-butane in commercial and residential buildings are often the sources of accidents. These accidents are accompanied by human losses, damages on properties and harms on environment. The paper shows the examples of selected accidents, proposes countermeasures for prevention and summarizes demands on response to accidents.

Keywords: Gas installations, Commercial and residential buildings, Accidents, Prevention, Risk, Safety.
infrastructure system is modeled. For this purpose, the system is divided into its entities according to common CI definition. Then, the possible service levels of each entity are assessed and quantified, such as standard operation mode, emergency operation mode or breakdown. Logically linked requirements for reaching those levels are defined, either autonomously or as an external dependency (e.g. a power generator), forming a system of dependent services. In a third step, impacts of events are analyzed by degrading selected services and calculating the effects on other services according to the logically linked requirements. Uncertainties can be described by specifying probabilities for service levels. The development over time can be examined by evaluating the impacts of sequential time intervals, e.g. for a regional blackout, where more CI will face difficulties over time.

Keywords: Critical infrastructures, Modeling, Cascading effects, Boolean logic, Functional impact analysis, Uncertainty, Uncertainty propagation.

Session	WE3G: 649 Venue	Atrium 3
Day/Date/Time | Wednesday, 22 Sep. 2021/14:00–15:00 hrs
WE3G: 656 | 14:20 hrs

Environmental Monitoring in a Cuban Oil Storage Plant to Characterize the Hydrocarbons Pollution Exposure in the Fence-Line Community
David Javier Castro Rodríguez1,2, Omar Gutiérrez3, Jerivy Bermúdez Acosta3 and Micaela Demichela3

1Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Italy. E-mail: david.castro@polito.it, micaela.demicha@polito.it
2Environmental Engineering Group, Centro de Estudios Ambientales de Camagüey, Cuba. E-mail: omara@getion.ceac.cu, reinol@getion.ceac.cu
3CEO, Greeng S.R.L, Paraguay. E-mail: jelvys@greeng.com.py

Due to the wide application of oil in industry, large amounts of petroleum hydrocarbons have been annually released into the environment. Legacy contamination and its interaction with other risks, continue impacting a new generation of residents in the fence-line communities. The goal was to characterize the hydrocarbon pollution which could impact on the community living near an oil plant. A Cuban oil storage plant was analyzed as a case study, in order to address the environmental monitoring of physical and chemical parameters from process industry, as factors which may be used in the spatial modelling of local vulnerability and communities resilience analysis. Firstly, the engineering research on the interest area were reviewed, from which, four comprehensive geographical strata were established. Furthermore, 19 wells were identified around the industry, which were almost exclusively used for human being consumption water. Subsequently, a monitoring program upstream, downstream and inside the plant was design. The lab results regarding hydrocarbons, fats and oils, and organic load frequently trespassed the standard requirements. The causal analysis suggested that the contamination with hydrocarbons in the aquifer was produced by infiltration in the unsaturated area, derived from the poor management of oily residuals in the plant. The results highlighted the negative impacts linked to the plant operations, which have acted as a dynamic stressor against the territory, increasing the vulnerability on the local community. The case study results not only contributed to raise the vulnerability awareness in the decision-making process, but also, have supported the effectiveness of the framework adopted.

Keywords: Aquifer, Local vulnerability, Hydrocarbons pollution, Oil storage plant, Monitoring, Spatial modeling, Resilience analyses.

WE3G: 656

Wednesday, 22 Sep. 2021

Physico-Based Accelerated RDT Testing for High Reliable Equipment
Caio Souto Maio1,2, Eduardo José Novaes Menezes1,3, Isis Didier Lins1,2, João Mateus Santana1,2, Marcus José das Chagas Moura1,2, Rafael Valdez Azavedo1,2, Manoel Feliciano da Silva1,2 and Marcus Vinicius de Campos Magalhães2,3

1CEERMA – Center for Risk Analysis, Reliability and Environmental Modeling, Federal University of Pernambuco, Brazil. E-mail: caiomaior@hotmail.com, eduardo.novaesmenezes@ufpe.br, isisdidierlins@hotmail.com, mrcmaur@ceerma.org, azavedorafael@hotmail.com, marcosvcm@petrobras.com.br, marcusvcm@petrobras.com.br
2CENPES/Petrobras – Research Center Leopoldo Américo Miguez de Mello, Brazil. E-mail: feliciano@petrobras.com.br, marcosvcm@petrobras.com.br

Reliability Demonstration Testing (RDT) is a reliability evaluation methodology focused on experimentally simulating system lifetime and using the test results to conclude if a pre-specified reliability threshold for the desired confidence level is reached. At first, RDT planning entails analyzing specific failure modes and mechanisms that may cause system failure so that the test design adequately addresses them. Then, the test time for a given number of specimens is estimated, or the required number of units to be tested over the available test time is established. However, for high reliable equipment, the amount of time or the number of items necessary to be tested to simulate actual field conditions are rather long and even unfeasible, given budget...
and time constraints. An alternative solution for applying RDT in these situations involves using physics modeling of the failure mechanism to reduce the test time by accelerating test variables according to the subjacent physical law. In this paper, we design an RDT for highly reliable equipment used in the O&G industry considering fatigue failure induced by vibration as the main failure mechanism. The physics-based RDT includes the fatigue S-N Curve in its planning, which permits test time acceleration and test costs reduction. A sensitivity analysis is carried out to assess the impact of RDT inputs, such as the acceleration level and the number of specimens tested, on the test time. The obtained results show that the proposed physics-based RDT is an effective method to support the design of efficient physical tests for equipment under development that must comply with high-reliability targets. Keywords: RDT; Numerical simulations; Reliability analysis; Fatigue failure; Acceleration factors.

Keywords: Reliability demonstration tests, Accelerated life tests, Fatigue life, Physics-of-failure, O&G industry.

A Bayesian Regularized Artificial Neural Network for the Estimation of the Ignition Probability in Accidents in Oil & Gas Plants
Francesco Di Maio1, Oscar Scapinello3, Enrico Zio1,2, Salvatore Cincotta3, Anna Crivellari3, Luca Decarli3 and Laura La Rosa3
1Politecnico di Milano, Italy
2CNR-ParoTech, PSL Research University, Sophia Antipolis, France.
E-mail: francisco.dimaio@polimi.it, oscar.scapinello@polimi.it, enrico.zio@polimi.it
3Eni Natural Resources HSEQ, Italy.
E-mail: salvatore.cincotta@eni.com, anna.crivellari@eni.com, luca.decarli@eni.com

Within the Quantitative Risk Assessment (QRA) of Oil & Gas (O&G) plants, the estimation of the Ignition Probability (IP) following the release of flammable material in an accident (e.g., a Loss of Primary Containment (LOPC)) is commonly conducted by time-consuming and computationally demanding Computational Fluid Dynamics (CFD) simulations, for only a limited number of operational configurations and accident scenarios. In this work, we propose an Artificial Neural Network (ANN) to overcome these limitations. Specifically, a Bayesian Regularized ANN (BRANN) is developed from a limited set of operational configurations and LOPC characteristics relative to a representative onshore O&G plant, then benchmarked and shown to outperform a traditional polynomial regression approach often adopted in O&G industry.

Keywords: Quantitative risk assessment, Ignition probability, Computational fluid dynamics, Linear regression, Bayesian regularization, Bayesian regularized artificial neural networks.
Autonomous Ships: Challenges, Opportunities, and Trust, As Seen From the Perspective of Current and Future Navigators
Magnhild Kaarstad1,*, Alf Ove Braseth1,*, Jon Bernhard Høstmark2 and Espen Strange2
1Institute for Energy Technology, Norway. E-mail: *magnhild.kaarstad@ife.no, alf.ove.braseth@ife.no
2Kongsberg Group, Kongsberg Maritime, Norway. E-mail: Jon.Bernhard.Hoestmark@kkm.kongsberg.com,
espen.strange@kkm.kongsberg.com

This paper presents a small-scale study that was performed in an early phase of a research project focusing on developing interaction solutions for the concept of unmanned, autonomous cargo-ships. This research project is funded by the Research Council of Norway. There is a need to gain more knowledge about the interaction between human and automation in this new operational concept. This paper focuses on how the concept of unmanned, autonomous cargo-ships is perceived by navigators. Open and structured questions regarding challenges, opportunities and trust were distributed to two groups, i) experienced and, ii) future navigators. Answers regarding possibilities and challenges seem to be influenced by the participants’ previous sailing experience. Regarding trust, our findings indicate that experienced navigators evaluate their trust in unmanned, autonomous cargo-ships lower than future navigators, and it also seems like experienced navigators show a larger variation in their general attitude towards the concept. This suggests that affective factors may impact trust towards the concept. Furthermore, in our study, experienced navigators seem to be particularly concerned about complex traffic situations for unmanned, autonomous cargo-ships. The paper outlines several areas for further research and development. The next phase of this project will be to start developing prototype interaction solutions for a remote operation center and test these solutions iteratively with navigators in a simulator.

Keywords: Autonomous cargo-ships, Remote supervision, Challenges, Opportunities, Trust, Current navigators, Future navigators.

Human-Automation Interaction for a Small Autonomous Urban Ferry: A Concept Sketch
Thomas Porathe
Department of Design, NTNU, Norwegian University of Science and Technology, Norway. E-mail: thomas.porathe@ntnu.no

At the NTNU in Trondheim, a new Centre for Research and Innovation started in 2021 with the aim of supporting the Norwegian industry’s attempts to realize autonomous shipping. One of its use cases is AutoFerry, a small autonomous urban passenger ferry crossing the harbour canal in Trondheim. This research area is usually technology centered and there is a lack of Human Factors (HF) research. This concept paper is presenting some design sketches of Human-Automation Interaction for this ferry. The ferry’s operating concept is simple but includes some difficult problems regarding HF and interaction design implementations. First, the design of interaction between the autonomous ferry and other, manned vessels in the canal: How to signal intentions using different interfaces? Second, the design of the control room: Situation Awareness by different sensors, automation transparency, and how do the operator understand and interact with automation? And thirdly, the interaction between the crew-less ferry and passengers: How to promote trust and safety, and how to handle emergencies? The paper discusses safety and security issues and presents some possible solutions and sketches of prototype interfaces for testing.

Keywords: Maritime autonomous surface ships, Urban ferry, Human-automation interaction, AutoFerry, human-machine interface, Human Factors, SFI AutoShip.
Big Data Analytics for Reputational Reliability Assessment Using Customer Review Data
Jean Meunier-Pion1, Zhiguo Zeng1,2 and Jie Liu2
1Chaire on Risk and Resilience of Complex Systems, Laboratoire Génie Industriel, CentraleSupélec, Université Paris-Saclay, France. E-mail: jean.meunier-pion@student-cs.fr, zhiguo.zeng@centralesupelec.fr
2School of Reliability and Systems Engineering, Beihang University, China. E-mail: liujie805@buaa.edu.cn

Traditionally, reliability assessment is done based on lifetime testing data. Such assessment methods suffered from a lot of limitations. For example, it is in general difficult to collect enough life testing data to support an accurate reliability assessment. Further, the experimental conditions cannot hardly reproduce the way a consumer will use a product in practice. In the meantime, with the expansion of the Internet, a lot of customers give their feedbacks on the products by posting reviews on websites. This constitutes a huge, easily accessible, and more realistic database that can be used to assess reliability.

In this work, we scraped reviews from a famous e-commerce website. Machine learning models are developed to extract failure-related information from these reviews. Two kinds of information are examined in this study: (1) whether a review reports a failure and, in such a case, (2) the severity of the failure. We used natural language processing tools to process text and we developed different classification models for information extraction. The developed methods were tested on customer review data from 11 different tablets of several brands. The results we obtained were around 85% accuracy when training and testing our models with our dataset. Hence, the machine learning-based approach we developed is demonstrated to be a promising first step to assess reliability thanks to web-based data. However, with a corpus containing only a few thousand examples and more than 100,000 words, using text to train classification models remains a complicated task. Especially, the models developed in this paper strongly overfit despite the use of several methods designed to prevent overfitting.

Keywords: Internet, Scraping, Logistic regression, Classification, Natural language processing, Ensemble learning.

Efficient Deep Learning Scheme to Evaluate the Reliability of a Passive Safety System
Kyungho Jin, Hyeonmin Kim and Jinkyun Park
Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea
E-mail: kshpjk@kaeri.re.kr

Passive safety systems are introduced to mitigate accidents in nuclear power plants (NPPs) even under extremely harsh conditions. One way to estimate the reliability of this passive system is to employ the Monte Carlo simulation (MCS) with the thermal-hydraulic (T-H) simulation code. Due to the fact that the failure probability of a passive safety system is extremely low, a number of simulations are essential to obtain reliable results; the long computation time of a T-H code makes it difficult to perform a large amount of analysis. In order to reduce this computational burden, previous researches have proposed the framework using the advanced sampling techniques for MCS combined with a surrogate regression/classification model instead of the running T-H code.

This paper also employs a deep learning (DL) scheme as a surrogate model to minimize the running of T-H code when evaluating the reliability assessment of a passive system. In addition, this paper also suggests the efficient scheme for the generation of training data to make data sets include more failure cases that rarely occur during MCS. With this motivation, at first, distributions of input parameters are updated by constructing empirical distributions based on specific combinations contributing to the system failure. In the next step, the semi-supervised learning is carried out to obtain more training data without the T-H code. Using this concept, it can be found that the performance of the surrogate DL model describing the decision boundary can be enhanced.

Keywords: Passive safety system, Failure probability, Deep learning, Monte Carlo simulation, Sampling, Semi-supervised learning.
On Communicating Cost-Effectiveness of Flood-Mitigation Schemes

Onno Bokhove
Leeds Institute for Fluid Dynamics, University of Leeds, Leeds, UK.
E-mail: o.bokhove@leeds.ac.uk

Flood risk protection measures are designed to reduce intensity, frequency and extent of feared events. For any category of measures ranging from classical civil engineered measures to Nature-Based Solutions (NBS), being able to assess their physical and technical capacity remains a starting key issue and requirement. It is essential both to design effective solutions and also to analyze their reliability during their lifetime. For hydraulic applications, the analysis of this capacity consists in checking that proposed solutions are able to evacuate flood water discharge or to store water volume. The protocol described in this paper provides an easy-to-understand framework to assess and represent the floodwaters and how much each option will cost. The tool is designed to help both the public and policymakers grasp the headline options and trade-offs inherent in flood-mitigation schemes. It has already led to better understanding and decision-making regarding flood defences in the UK, Slovenia and France, particularly where a number of alternatives are being considered. Three realistic cases – from the UK, Slovenia and France – will be reviewed, including insights on dealing with uncertainty and on the communication of multiple benefits of Nature-Based Solutions, followed by a Socratic-method dialogue.

Keywords: Flood-mitigation assessment, Cost-effectiveness analysis, Decision-making, Flood-excess volume.

Improvement of Proportional Conflict Redistribution Fusion Rules for Levee Characterization

Théo Dezert1 and Jean Dezert2
1GERS, Gustave Eiffel University, Boulogne, France.
E-mail: theo.dezert@univ-eiffel.fr
2ONERA/DTIS, Palaisau, France.
E-mail: jean.dezert@onera.fr

Levee security assessment is a complex expert assessment process based on several heterogeneous data. In our previous research works, we applied information fusion techniques to characterize flood protection levees. We used the proportional conflict redistribution rule no.6 (PCR6) proposed in DSmT (Dezert Smarandache Theory) framework to combine data from geotechnical and geophysical investigations. However, in some cases, this rule can generate non-satisfactory results. Indeed, the uncertainty between several hypotheses (f lithological materials) is overestimated after the fusion process, which is detrimental to decision making in the end. This result occurs because the PCR6 rule does not preserve the neutrality of the vacant belief assignment, which can be judged as being a counter-intuitive behavior. To overcome this problem we present an improved rule that preserves the neutrality of vacant belief assignments in the fusion process. Hence, the redistribution of the partial conflict masses using this new rule does not overestimate the masses associated with partial uncertainties. To illustrate the use of this new fusion rule in a levee characterization problematic, we simulate data acquisition. Two geophysical investigation campaigns (electrical resistivity tomography and multi-channel analysis of surface waves methods) and a geotechnical acquisition campaign (core drillings with particle size analysis) are numerically simulated on an earthen structure. The objective is to compare and discuss the fusion results obtained using this new rule with respect to the methodology based on the original PCR6 rule as well as to demonstrate the enhancement of the levee characterization.

Keywords: Belief functions, Levee, Cross-disciplinary approach, Natural hazards, Fusion rules, Risk management, Proportional conflict redistribution rule.
Prediction of Runoff Sediment Volume Using Stochastic Analysis of Debris Flows Peak Discharge

Toshiyuki Horiguchi1 and Yoshiharu Ishikawa2

1Civil Engineering, National Defense Academy, 1-10-20 Hashirimizu Yokosuka Kanagawa, Japan. E-mail: htsoshi@nda.ac.jp
2Emeritus Professor, Tokyo University of Agriculture and Technology, 3-5-8 Haromin Fucyu Tokyo, Japan. E-mail: bishi@cc.tuat.ac.jp

Recently, large-scale disasters have occurred all over the world including Japan due to climate change. Hereby, debris flows which have exceeded their associated initial structural design hypothesis have been recorded in disaster report. Protection works failures linked to those debris flows exceeding their design assumptions may lead to disasters. In Japan, Sabo works are based on hypothesis about structural stability including loading scenarios defined in the Sabo plan. It depends on the debris flow peak discharge and planned sediment amount (movable sediment volume) from the estimated rainfall that mean 100-year excess probability rainfall1). Predicting debris flows’ runoff sediment volume and peak discharge is necessary to design active and passive protection measures in torrential streams. This study proposes a method to estimate both debris flows runoff sediment volume and peak discharge using a probabilistic safety assessment based on about 450 debris flows data recorded in Japanese survey database2.

On one hand, statistical analysis showed relative correlations between drainage basin area and both runoff sediment volume and peak discharge. On the other hand, there were no significant correlation between runoff sediment volume and peak discharge. An estimation method for choosing the design value of runoff sediment volume and peak discharge using the drainage basin area is proposed: it uses a 95% prediction threshold based on data provided by the survey.

Keywords: Debris flows, Runoff sediment volume, Debris flow peak discharge, In-situ survey data, Basin area.

Safe Interaction Between AVs and Vulnerable Road Users

Miltos Kyriakidisa and Vinh N. Dang

Laboratory for Safety Systems Analysis, Paul Scherrer Institute, Switzerland
E-mail: a.miltiadis.kyriakidis@psi.ch

Advanced automated driving vehicles (AVs) are expected to radically transform road transport by improving safety, increasing traffic flow efficiency, enhancing mobility for all, and reducing road congestion, fuel usage and emissions. To facilitate deployment research has vastly focused on ensuring the safety of AVs operation, investigating primarily the interaction between the human driver (or user depending on the level of automation) and the AV. In addition to the interaction between the AV and its user, the successful deployment of AVs depends also on the exchange between AVs and other road users, also known as vulnerable road users (VRUs), such as pedestrians and cyclists, as well as motor-cyclists, people with disabilities or reduced mobility and orientation. For instance, what do cyclists and pedestrians anticipate when interacting with AVs; are AVs capable of recognizing cyclists and pedestrians in time; can AVs predict accurately the intentions of VRUs; and how shall AVs communicate their intentions to VRUs? Focusing on vehicles with advanced automated driving features, that is vehicles that allow the human driver to not execute the driving task when automation is engaged1, this paper contributes to the overall discourse on safety of automated driving vehicles in a twofold manner. First, it critically reviews the literature on the interaction between AVs and VRUs, discusses the recent developments and identifies the most prominent research gaps. Second, it shows results of an international online survey on the VRUs expectations, preferences and concerns with respect to their interaction with AVs. We expect our findings to not only provide new insights on the interaction between automated driving vehicles and vulnerable road users, but also be instrumental for policy makers and other relevant actors involved with the development of automated driving technology.

Keywords: Automated driving vehicles, Vulnerable road users, Safety, Communication, Trust, Acceptance, Online survey.
Rule-Based and Managed Safety: A Challenge for Railway Autonomous Driving Systems

Philippe Richard, Abderraouf Boussif, and Christopher Paglia

Institut de Recherche Technologique Railenium, F-59300 Famen, France
E-mail: philippe.richard@railenium.eu,
abderraouf.boussif@railenium.eu, christopher.paglia@railenium.eu

Safety is a key concern for road, rail, and air transport activities. It must be continuously ensured at the technical, operational, and organizational levels. At the operational level, two types of safety come into play: (i) rule-based safety, which is based on standards, procedures, and technical barriers and concerns known events, and (ii) managed safety, which is currently supported by human operators, mainly by drivers in the context of railway system, who tend to focus on unforeseeable events. In the context of autonomous trains, in which all or a part of the driver’s activities and tasks are transferred to an automatic driving system, that integrating some advanced artificial intelligence technologies, the system should consider the managed safety, in addition to the rule-based one. In order to identify different possibilities for its integration and to feed a reflection around this question, we revisit in this paper the concepts of rule-based and managed safety in the transport domain and we analyze their future management in the context of autonomous systems. At the operational level, it must be continuously ensured at the technical, operational and organizational levels. At the operational level, it must be continuously ensured at the technical, operational and organizational levels.

Keywords: Autonomous and connected car, Lane-changing intent prediction, Highway trajectory data, Rule-based model, MOBIL, Data-based algorithm, Decision tree.

Comparing Rule-Based and Data-Based Approaches for Lane-Change Prediction

Khella Basma and Tordeux Antoine

Institut de Recherche Technologique Railenium, F-59300 Famen, France
E-mail: khella.basma@railenium.eu, antoine.tordeux@uni-wuppertal.de

Predicting lane-change intents is crucial for driving automation. Several rule-based models and data-based algorithms exist in the literature, among others modelling approaches. In this contribution, we compare lane-change intent prediction using MOBIL rule-based model and a decision tree algorithm. Both approaches are based on the speed difference and spacing with the four surrounding vehicles on current and intended lanes. The data are collected from the highway Drone (HighD) trajectory data-set of two-lane German highways. We extract from the trajectories lane-keeping and lane-changing maneuvers, including lane-keeping on right and left lane and lane-changing to the right and the left lane. The behavior of the driver significantly changes according to the maneuver. It turn out that changing the lane to the right (fold-down) is a more complex process than lane-changing to the left (overtaking). Indeed, overtaking results from a mechanism with the neighbors mainly based on three parameters, while fold-down requires more complex combinations. This leads to different meanings of the spacing variables with the neighboring vehicles and requires analysing the maneuvers separately. We compute and compare the prediction errors of lane-changing and lane-keeping intents for the rule-based MOBIL and decision tree approaches. The databaseal algorithm, devoid of modeling bias, can predict both overtaking and fold-down maneuvers accurately.

Keywords: Lane-changing, Rule-based and Managed Safety: A Challenge for Railway Autonomous Driving Systems.
Accidents involving maritime vessels can have severe consequences, i.e., high potential loss-of-life and environmental impact. Hence, risk assessment is essential to the safety of a vessel’s operations. Risk assessment for conventional vessels can be considered well established - however, challenges are present for the risk assessment of vessels with autonomous behavior, and generally for complex and software intensive systems. Generally, traditional artificial intelligence methods used in a system to perform tasks autonomously are not risk-informed, which may later result in an accident scenario. For example, state-of-the-art autonomous navigation methods are reactive to risk, acting to avoid hazards or consequences only after identifying a potential accident scenario. By preemptively performing risk assessment and incorporating risk information in the autonomous decision-making process, we can proactively avoid an accident scenario altogether. In this paper, we present a novel framework for simulation-based Dynamic Probabilistic Risk Assessment (DPRA), using the Accident Dynamic Simulator (ADS) as the point of departure. We describe the concepts, structure, constituent parts of the DPRA framework, and how it will contribute to safer autonomous decision-making in the future.

Keywords: Autonomous systems, Probabilistic risk assessment, Autonomous decision-making, Accident dynamic simulator.
Index Method for Risk Assessment Using Load Lifting (Crane) and People Lifting (MEWP) Equipment

Antonino Muratorea, Giuseppe Giannellib, Vincenzo Nastasic, Giuseppe Sferruzzad and Giovanni Grillonee

aUOT Como, Inail, Italy.
bE-mail: a.muratore@inail.it, g.giannelli@inail.it, tim.mueller@kit.edu, v.nastasi@inail.it, g.sferruzza@inail.it, g.grillone@inail.it

The safe use of load lifting equipment (various types of cranes) and people lifting equipment (Mobile Elevating Work Platform, MEWP) during use is regulated in European Union by directive 2009/104/EC, that concerns the minimum safety and health requirements for the use of work equipment by workers at work (second individual Directive within the meaning of Article 16 of Directive 89/391/EEC).

The use naturally occurs after the manufacturing and placing on the market phase, which in European Union must follow the machinery directive 2006/42/EC, in order to guarantee the minimum safety and health requirements ("MSR") of the product itself, which, in this case, are Cranes and MEWP.

The purpose of this article is to suggest to the employer an index risk assessment method to evaluate various risk-factors for Cranes and MEWP used in company or building site, with reference to the place of installation and their use, working methods, maintenance conditions, etc. etc., considering that numerous accidents occurred despite the equipment respects the "MSR".

The proposed method follows the UNI ISO 31000:2018 standard “Risk Management – Principles and guidelines”, based on the technique called “Consequence Likelihood Matrix” provided by ISO 31010:2019 “Risk Management – Risk Assessment Techniques”. The abovementioned method allows to evaluate the level of risk (acceptable / unacceptable) for the specific company/building-site context, where Cranes or MEWP are used.

Keywords: Risk assessment, Index method, Load lifting equipment, People lifting equipment.
Localization Systems for Safety Applications in Industrial Scenarios
Luca Landi1, Alice Buffi2, Mirko Marracci2, Alessandro Stecconi1, Pasquale Di Leone2, Fabio Bernardini3 and Luciano Didonato4
1Department of Engineering, University of Perugia, Via Ducenti, 63, Perugia, Italy. E-mail: a.luca.landi@unipg.it
2Department of Energy, Systems, Territory and Constructions Engineering, University of Pisa, Largo Lucio Lazzamino 1, Pisa, Italy. E-mail: b.alice.buffi@unipi.it
3Department of Information Engineering, University of Pisa, Via G. Caruso 16, Pisa, Italy. E-mail: f.bernardini@phd.unipi.it
4Dipartimento Innovazioni Tecnologiche (DIT-INAIL), Rome, Italy. E-mail: l.didonato@inail.it

In this paper, main researches related to the implementation of tracking systems for the localization of workers in industrial areas are presented. Major systems already implemented will be investigated by focusing on hardware, software and different features. Particular attention is deserved to the passive Radio Frequency Identification (RFID) technology by virtue of its low cost, no energy consumption and possibility of identification of objects/persons with good accuracy.

Moreover, since the massive introduction of connected devices in industrial environment results in new requirements of interconnected systems, e.g. design/production department, maintenance service, general information through Internet of Things, a higher required performance level has to be assured for safety of machinery. Since an interconnection between localization systems and control system of the machine (or assembly of machinery) is not covered by a harmonized safety standard, the possibility of controlling parts of the machine through the remote server of the localization system is explored. The utilization of a specific smart mode selector on single machine of the system is foreseen to allow this type of man/machine interaction without unresolved safety issues.

Keywords: Localization for safety, Passive RFID localization, RFID for safety, Worker localization, Smart systems for maintenance of machinery.

Risk Assessment of Pressure Equipment During Use Phase
Antonino Muratore5, Giuseppe Giannelli7, Vincenzo Nastasi5, Giuseppe Sferruzza5 and Giovanni Grillone5
UOT Como, Inail, Italy. E-mail: a.muratore@inail.it, g.giannelli@inail.it, v.nastasi@inail.it, g.sferruzza@inail.it, g.grillone@inail.it

The Directive 2009/104/EC regulates the safe use of pressure equipment (Steam Generators, Reactors, Pressure Vessels, Piping, etc.) during use phase in European Union. The directive concerns the minimum safety and health requirements for using work equipment at work. The use phase naturally occurs after the manufacturing and placing on the market phases, which in European Union must follow the directive 2014/68/EU (PED - Pressure Equipment Directive) in order to guarantee the Minimum Safety and health Requirements (MSR) of the product.

The purpose of this article is to suggest to the employer an index risk assessment method to evaluate various risk factors for pressure equipment and assemblies used in company, with reference to the place of installation and their use, working methods, maintenance conditions, level of training of exposed workers, etc., considering that numerous accidents occurred despite the equipment respects the “MSR”.

The proposed method follow the UNI ISO 31000:2018 standard “Risk Management – Principles and guidelines”, based on the technique called “Consequence Likelihood Matrix” provided by ISO 31010:2019 “Risk Management – Risk Assessment Techniques”. The above mentioned method allows evaluating the level of risk (acceptable/unacceptable) for the specific company context. If the risk is unacceptable, the employer must implement specific prevention and/or protection measures in order to protect the safety and health of the exposed workers.

Keywords: Occupational safety, Risk assessment, Index method, Pressure equipment and assemblies, Use phase.
In the paper, a novel Petri Net (PN) method for assessing the resilience of nuclear reactors is presented. The PN model constructed aims to simulate the failure of the subsystems in a reactor caused by either natural degradation or external disruptive events such as tsunamis and earthquakes, the resultant accidents due to the failure of different reactor subsystems, the responses of the reactor to different accidents, and the recovery and maintenance of the reactor after the accident. The simulation results are analyzed to identify the key characteristics of the resilience of the nuclear reactor. To demonstrate the feasibility and the capability of the proposed approach, the failure of four heat transport pumps in the primary cooling system of an experimental reactor is chosen as a case study. The research shows that PN modeling is an effective tool for evaluating the resilience of nuclear power plants.

Keywords: Resilience, Nuclear power plant, Petri nets, Maintenance, Mathematical modeling, Simulation.

Dynamic Probabilistic Safety Assessment with Petri Nets

Thomas Dosda\(^1\) and Jean-Yves Brandelet\(^2\)

Framatome, 1 place Jean Miller 92084 Paris La Défense cedex, France.

E-mail: \(^{1}\)thomas.dosda@framatome.com, \(^{2}\)jean-yves.brandelet@framatome.com

The communication presents the dynamic method developed and used by Framatome for the Probabilistic Safety Assessment (PSA) of a Sodium-cooled Fast Reactor (SFR). The purpose of this communication is to highlight different ways to pass through some limitations of the static reliability tools by moving to a dynamic modeling.

For Pressurized Water Reactors (PWR) PSA models are commonly developed with fault trees and event trees. This kind of models can be qualified as “static” because it takes only partially the time factor into account. It is commonly admitted that this modelling is appropriate for PWR due to the relatively short mission time of safety features (some hours) related to the fast progress of physical phenomenon after an accident. When studying an SFR, one of the PSA objectives is to demonstrate that the frequency of the loss of Decay Heat Removal (DHR) is practically eliminated with a high level of confidence. For this type of reactor, the kinetic of an accident is different compared to a PWR and require the risk to be screened on a longer period for which repairs could be taken in account.

In this context, Framatome is developing a dynamic PSA based on Petri nets. Calculations are performed with a statistical method (Monte-Carlo). As a static model, the dynamic model has to take into account failures on demand, failures in operation, common cause failures, initiating events, dependencies between systems or components, human reliability and preventive maintenance.

Furthermore, to limit conservatisms, the dynamic model should be as close as possible to reality with real-time modeling of the plant configuration (repairs, number of available repairers, thermal-hydraulic situation at any time...). For that purpose, a “temperature module” has been developed. This module gives the image of the evolution of the primary sodium temperature at each time of the simulation. This module abolishes the use of pre-determined success criteria and replace it by a direct scanning of the real behavior of the installation (evolution of the reactor coolant temperature) allowing establishing a more realistic grace period towards adverse event (overtaking of limit temperature).

Our latest progress in dynamic PSA modelling with Petri nets allows, when repairs are not taken into account, comparison with static PSA modelling which shows similar results. However, dynamic PSA robustness is to be strengthened in the objective to, one day, play a role in the licensing of a Nuclear Power Plant in combination with static PSA. For this purpose, improvements in terms of modelling accuracy and results are encouraging to continue our development in the field of dynamic PSA.

Keywords: Petri nets, Dynamic PSA, Sodium-cooled fast reactor, PSA, Monte-Carlo.
A Modelling Framework for Dynamic Safety Assessment
Silvia Tolo1, Rundong Yan2, Sarah Dunnell3, and John Andrews1
1Resilience Engineering Research Group, University of Nottingham, Nottingham, U.K.
E-mail: silvia.tolo@nottingham.ac.uk, john.andrews@nottingham.ac.uk
2Risk and Reliability Group, University of Loughborough, Loughborough, U.K.
E-mail: r.r.yan@lboro.ac.uk, jo.skjermo@sintef.no

The concept of resilience is progressively making its way into the design, operation and management practice of complex engineering systems. The core of such trend lies with the integration of failure mechanisms in the modelling of systems since the very design phase, focusing on the ability to efficiently absorb and rapidly respond to threats rather than merely avoid them. This is expected to overcome the limitations of traditional design against failure approaches, whose efficiency is often undermined by the strong uncertainty associated with rare or hardly predictable hazards. However, the potential advantages such a theoretical shift delivers have not yet been matched by the availability of adequate numerical tools and methodologies targeting the challenges associated with resilience analyses. The current literature and engineering practice lack of a widely agreed upon methodology for the assessment of systems resilience, or even for the definition of its metrics.

This study proposes a novel approach for the estimation of the dynamic response of complex systems to safety threatening perturbations, aiming at providing a solid base for the evaluation of system resilience, or even for the definition of its metrics.

The framework proposed relies on the use of Petri nets to capture both the physics of the processes entailed by the system operation and its interaction with the technological installation. The framework is applied to a case-study focusing on the response of a CANDU nuclear reactor to cyber incidents hindering the correct operation of the reactor control system and hence resulting in a loss of regulation threatening the structural integrity of the nuclear fuel.

Keywords: Resilience, Nuclear, Reactor, Safety, Cyber, Petri Nets.
Neurosingular Machines: New Results
Alekseandr Kirillov1,2, Sergii Kirillov1,2, Jose Ignacio Aizpurua Unanue1,3, Markel Penalba Retes1,4, Natalia Kirillova1 and Michael Pecht5
1Nexis Machines Ltd, Israel. E-mail: skirillov@gmail.com, 2smarttechappl@gmail.com
2Mondragon University, Arantzazu-Mondragón, Spain. E-mail: jiaizpurua@mondragon.edu, 3mpenalba@mondragon.edu, 4skirillov@mondragon.edu
3Center for Advanced Life Cycle Engineering, University of Maryland, Maryland, USA. E-mail: pecht@calce.umd.edu

The article describes the construction of optimizing Self-maintenance solutions based on PHM systems, represented as neurosingular machines.

The main attention is focused on the description of singular processes in incoming data flows: topological singularities, strong as singularities, singular probability measures. On the basis of topological analysis and double microlocal analysis, predictors for the appearance of all types of singularities and their interconnection were determined.

The singularity progression timeline is constructed. It is shown that the singularity progression timeline predicts the occurrence of predictors of failure. That is, they are hidden predictors and the cause of failure predictors. Based on the analysis performed, the traditional version of the Failure progression timeline (FPTL) is corrected.

In particular, transient classes are defined between the FPTL classes. In this case, the classes of transient processes are determined by the birth and evolution of singularities, and on the transient process, its own progression timeline of singularities is also determined.

The problem of calculating remaining useful life is discussed. Non-temporary characteristics of time series are introduced, reflecting the degree of proximity of the system to class boundaries and failure boundaries.

Taking into account the adjustment of the FPTL and the addition of singularities of the progression timeline to it, the description of self-maintenance solutions optimizing to increase the life cycle of technical systems and reduce operating costs continues.

Keywords: Self-maintenance, Self-recovery, Non-improve RUL estimate, Digital twin, Uncertainty management.
A Closed-Loop Prescriptive Maintenance Approach for an Usage Dependent Deteriorating Item – Application to a Critical Vehicle Component

Pedro D. Longhițano, Khoulia Tidriri, Christophe Berenguer and Benjamin Echard

1University Grenoble Alpes, CNRS, Grenoble INP, GIPSA-Lab, Grenoble, France
2Volvo Group Trucks Technology, Saint-Priest, France.
E-mail: 1pedro.longhițano@volvo.com, 2Khoulia.tidriri@grenoble-inp.fr, 3christophe.berenguer@grenoble-inp.fr, 4benjamin.echard.2@volvo.com

Connectivity and the huge data availability today open doors for modern and adaptable maintenance solutions. Nowadays, clients have the desire, not only to avoid breakdowns, but also to find out how to use their systems in order to reduce the overall exploitation cost and expand the remaining useful life. Researchers of different areas have worked to achieve such goal, but a complete solution that quantitatively assesses for different actions, costs and the degradation evolution was not proposed. In this paper, we will consider the example of a fleet of vehicles. We will model different operational costs as well as the degradation trajectory of a real component, and account for two possible actions: mission planning and maintenance operations scheduling. We highlight how those two actions are connected and propose a method for finding the optimal usage of the fleet. Finally, through simulations, we compare it to a maintenance/exploitation policy that mimics real fleet usage.

Keywords: Maintenance, Decision making, Multi-objective optimization, Degradation and reliability models, Automotive sector.

Design and Development of an Electromechanical Actuator Test Bench for Validation of Health Monitoring Models

Pier Carlo Berri, Matteo D. L. Dalla Vedova and Paolo Maggioni

Dept. of Mechanical and Aerospace Engineering, Politecnico di Torino, Italy.
E-mail: 1pier.carlo.berri@polito.it, 2matteo.dalla.vedova@polito.it, 3paolo.maggioni@polito.it

Electromechanical Actuators (EMAs) for aircraft flight controls are progressively replacing hydraulic systems in safety-critical applications. Hence, simple and accurate EMA numerical models are required for the real-time health monitoring of such equipment, as well as for more detailed and computationally intensive simulations for design and training of machine learning surrogates. In order to validate these models, we developed a dedicated EMA test bench (Figure 1) intended to replicate the operating conditions experienced by common flight control actuators. The bench is highly modular, allowing to easily replace components and test different EMA architectures. In order to contain costs and time associated to the development, we made extensive use of off-the-shelf hardware; most of the custom designed parts were manufactured through rapid prototyping techniques.

The test bench is able to simulate the operation of the actuator in nominal conditions and in presence of incipient mechanical faults, namely a variation of friction and an increase of backlash in the reduction gearbox. Sensitivity to electrical fault modes will be included in a future upgrade. The output of the test bench was compared to the predictions of numerical models in nominal conditions. The results showed a good matching between the two systems, which is promising for the use of such models within real-time health monitoring routines.

Keywords: Experimental validation, Lumped parameter models, Test bench, Electromechanical Actuator (EMA).

Hybrid Modeling for the Assessment of Complex Autonomous Systems – A Safety and Security Case Study

Rhiwa C. Rinaldo, Timo F. Horeis and Tobias Kain

1Cyber-Physical Systems, German Research Center for Artificial Intelligence (DFKI), Bremen, Germany.
E-mail: Rhiwa.Rinaldo@dfki.de
2Institute for Quality and Reliability Management (IQZ GmbH), Hamburg, Germany.
E-mail: horeis@iqz-unisignal.de
3Volkswagen AG, Wolfsburg, Germany.
E-mail: timo.kain@volkswagen.de

The automotive industry is facing various challenges with the introduction of autonomous vehicles. One significant aspect is the assessment and verification of safety and security concerns that the legislators and the public demand. New methods and tools are needed to analyze and assess these advanced systems by considering all relevant features and parameters, such as the interdependencies of safety and security while keeping the time effort reasonable. Hybrid models combining fast and accurate analytical approaches with relatively slow but realistic numerical approaches may be the answer to assess these complex systems while con-
In this paper, we apply an existing hybrid model that combines an analytical and a numerical method on a complex autonomous system to perform a holistic safety and security assessment. Thereby we assess the system under two safety-relevant assessment modes, representing different fail-operational behaviors of the system. The goal is to show that the hybrid model is capable of assessing realistic system architectures while allowing the consideration of different assessment modes.

Keywords: Autonomous vehicles, Safety, Security, Reliability, Assessment, Hybrid model.

In order to develop safe and autonomous systems in the automotive industry, for example, stable and reliable verification methods are of fundamental importance. In modern motor vehicles, more and more complex driver assistance functions are being implemented, such as the Electronic Stability Program (ESP), brake assistants or lane keeping functions. However, since malfunctions of the corresponding components cannot be completely ruled out, safety and failback concepts must be provided for the event of a system failure. In this way, the driver can be assured of control over the vehicle.

In the following chapters, the practical and autonomous system problems are dealt with in detail and this is examined scientifically. Furthermore, possible malfunctions of an autonomous system, which can occur during driving, will be investigated and verified with a contribution based on a stochastic model. The most important foundations of a verification approach for an autonomous system, are the framework conditions. These should be as realistic as possible. In an autonomous system, such as a motor vehicle, the steering angle and steering speed are formed by the steering angle sensor. The vehicle speed is determined from the wheel speed sensors. To correctly detect the direction of travel, the wheel speed signals are signed. The yaw rate and lateral acceleration are redundant. Other model assumptions for the verification model can be based on the input signals, such as the sensors or switches and the electrical connection (CAN / Flexray).

The monitoring algorithms are secured with the help of the software.

Keywords: Safety, Sensor, Probability, Reliability, Security.

The increasing use of autonomous systems (AS) aims to improve efficiency, costs, and safety of numerous operations. Yet, they also pose several safety challenges. Most of AS will operate in a dynamic environment, interacting with non-autonomous and/or other autonomous systems. The anticipation of both the AS and non-AS possible decisions during these interactions is crucial to identify and analyze potential hazards and risks, and to guarantee a safe operation. Game Theory (GT) has been increasingly used for modeling the interactions between AS and other agents in conflicting or cooperating situations. Recent applications of GT for AS also include the use of game-theoretical approaches for algorithm-testing and development, as well as for cyber-physical security assessment. Yet, the application of GT for analysis of AS operations under a risk perspective can still be considered in an early stage. This paper provides an overview of how GT is being applied to AS in the context of risk assessment. A review of the recent literature on GT applied to AS was carried out on the Scopus database using a combination of relevant keywords. It resulted in 100 articles within the period of 2015-2021. The articles were analyzed with regard to the technical domain of application and the scope of use of GT.

Keywords: Autonomous systems, Game theory, Game theoretical approach, Risk assessment, Safety, Drones, Self-driving cars.
Security cannot be implemented into a system retrospectively without considerable effort, so security must be taken into consideration already at the beginning of the system development. The engineering of automotive software is by no means an exception to this rule. For addressing automotive security, the AUTOSAR and EAST-ADL standards for domain-specific system and component modeling provide the central foundation as a start. The EAST-ADL extension SAM enables fully integrated security modeling for traditional feature-targeted attacks. Due to the COVID-19 pandemic, the number of cyber-attacks has increased tremendously and of these, about 98 percent are based on social engineering attacks. These social engineering attacks exploit vulnerabilities in human behaviors, rather than vulnerabilities in a system, to inflict damage. And these social engineering attacks also play a relevant but nonetheless regularly neglected role for automotive software. The contribution of this paper is a novel modeling concept for social engineering exploits with feature-related attacks. To elevate the practical usage, we implemented an integration of this concept into the established, domain-specific modeling tool MetaEdit+. The tool support enables collaboration between stakeholders, calculates vulnerability scores, and enables the specification of security objectives and measures to eliminate vulnerabilities.

Keywords: Automotive systems, Social engineering attacks, Design, Model-based development, Modeling, Security.
Bayesian Networks for Estimating Hydrodynamic Forces on a Submerged Floating Tunnel

G.A. Torres-Alves, O. Morales-Nápoles and S.N. Jonkman

Section of Hydraulic Engineering, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, The Netherlands.
E-mail: a.g.torres@tudelft.nl, o.m.morales@tudelft.nl, s.n.jonkman@tudelft.nl

A submerged floating tunnel (SFT) is a novel structure that allows crossing waterways where immersed tunnels or bridges are not viable. However, no SFT has been built yet mainly due to lack of experience. In consequence, there are several uncertainties regarding its design and construction. An effect that should be further investigated is the structural response of the SFT under the simultaneous action of waves and currents. For this purpose, extreme values of waves and currents that were generated through a vine-copula model are used as input in a statistical model based on Bayesian Networks (BNs). The BNs are used to study the conditional correlation (i.e. the correlation between random variables conditionalized on a given event) between the hydrodynamic forces acting on the SFT and metocean variables such as waves and currents. This methodology was applied to a case study in China for a SFT aimed to be built at the Qiongzhou Strait. Moreover, the BN model was used to test twelve different configurations of the SFT, with varying submergence depths and diameter sizes. The proposed methodology can be extended to test different configurations of the SFT and other hydraulic or maritime structures subjected to simultaneous loading.

Keywords: Submerged floating tunnel, Bayesian networks, Extreme values, Vine-copula, Waves, Currents.

Characterization of Long-period Ship Wave Loading and Vessel Speed for Risk Assessment for Rock Groyne Designs via Extreme Value Analysis

Sargol Memar1,2, Oswaldo Morales Nápoles1, Bas Hofland1 and Gregor Melling2

1 Department of Civil Engineering and Geosciences, Delft University of Technology, Delft, The Netherlands.
E-mail: a.g.torres@tudelft.nl, o.m.morales@tudelft.nl, s.n.jonkman@tudelft.nl

2 Department of Hydraulic Engineering in Coastal Areas, German Federal Waterways Engineering and Research Institute (BAW), Hamburg, Germany.
E-mail: gregor.melling@baw.de

During the last two decades, increasing vessel size in major German estuaries has led to the significant change of the local loading regime i.e. increased importance of ship-induced waves and currents. As a consequence, the intensity of ship-induced loads has increased considerably, resulting in damage to rock structures such as revetments, training walls, and groynes. Research into the causes of rock structure deterioration by the Federal Waterways Engineering and Research Institute (BAW) has shown that for large ships in relatively narrow waterways, the long-period primary ship wave loading has become the most prescient factor for rock structure damage. Looking into the future, it can be expected that the increase in the vessel dimensions will lead to an increase in the ship-wave loading. For this reason, analysing long-term changing trends of long-period ship waves and vessel speed to understand the wave-structure interaction is of significant importance.

In this study, the stochastic characterization of long-period primary wave height, drawdown, and speed of the vessel through the water at Juelssand in the Lower Elbe Estuary was analysed via extreme value analysis and copula modeling, and the bivariate return periods were calculated. The one-parameter bivariate copula was utilized to analyse the data. The dependence pattern between the variables was investigated using five parametric copula families: Gaussian, Gumbel, Clayton, Frank, and student’s t.

Keywords: Bivariate copula, Extreme value analysis, Juelssand, Long-period ship wave, Rock groyne, Wave-structure interaction.
Adverse Event Analysis in the Application of Drones Supporting Safety and Identification of Products in Warehouse Storage Operations

Agnieszka A. Tubis\(^a\) and Arkadiusz Żurek\(^b\)

Faculty of Mechanical Engineering, Wrocław University of Science and Technology, 27 Wyspianskiego St., 50-370 Wrocław, Poland.
E-mail: \(^a\)agnieszka.tubis@pwr.edu.pl, \(^b\)arkadiusz.zurek@pwr.edu.pl

The currently observed development of the Industry 4.0 concept causes the development of new technologies that support not only production processes in the smart factory, but also logistics processes including safety during warehouse inventories. For this reason, Logistics 4.0 systems use automatic data identification (barcodes, RFID) and autonomous vehicles. In the article, particular attention was paid to the use of unmanned aerial vehicles in logistic processes and thanks using them much higher level of safety during warehouse storage operations. They are used in particular for repetitive or hazardous operations where the human factor should be limited. The research area is the use of drones to support warehouse operations that are related to stock-taking. The aim of the article is to identify possible adverse events that may occur during the implementation of the drone mission and to classify them according to the selected classification criteria. The article presents the identified key adverse events and their causes. Then, they were classified based on the effects they generate for each stage of the measurement process. As part of the discussion, control measures and good practices were proposed that may reduce or even eliminate the occurrence of identified adverse events in the future. All the work was summarized in the final conclusions.

Keywords: Unmanned Aerial Systems – UAS, The drones, Logistics 4.0, Adverse events, Product identification, Inventory audit.

Applying an Unsupervised Machine Learning Method for Defining Maintenance Significant Items

Miguel Angelo de Carvalho Michalski\(^a\), Arthur Henrique de Andrade Melani\(^b\), Renan Favarão da Silva\(^c\) and Gilberto Francisco Martha de Souza\(^d\)

Department of Mechatronics and Mechanical Systems, University of São Paulo, Avenida Professor Mello de Moraes 2231, São Paulo, SP, 05508-030, Brazil.
E-mail: \(^a\)michalski@usp.br, \(^b\)melani@usp.br, \(^c\)renanfavarao@usp.br, \(^d\)gfmsouza@usp.br

The selection of Maintenance Significant Items (MSI) is a very important phase in the implementation of Reliability-Centered Maintenance (RCM) in any organization, being essentially a screening phase in which the number of items for analysis can be reduced and prioritized. Despite its importance, there are currently few studies that present systematic and structured methods for MSI identification. There are two phases to identify these items in a physical asset portfolio: firstly, based on the system study and analysis, the criteria and scales are established; secondly, the criteria evaluation for each item is performed. In the latter phase, generally, a Multicriteria Decision-Making (MCDM) method is used to rank the MSI. However, their intrinsic subjective evaluation can lead to bias results. To prevent this issue and simplify the process, this work proposes the use of an unsupervised method based on Principal Component Analysis (PCA). With this method application, not only the MSI of a system are defined, but also the importance of the criteria selected in the first phase is assessed based on the variability of the scores associated with each item. To demonstrate the method, it is implemented considering data from a hydroelectric power plant, and the results are compared to those obtained from a more traditional approach. It is noted that the proposed method points to a robust MSI selection, consistent with the analyzed system.

Keywords: Maintenance significant items, MSI, Machine learning, Principal component analysis, PCA, Multicriteria analysis, Multicriteria decision-making method, MCDM, Reliability-centered maintenance, RCM, Hydroelectric power plant.
The Ageing Challenge of Hazardous Installations in Italy: Accidents, Results of Inspections and Good Practices

Romualdo Marrazzo and Fabrizio Vazzana

E-mail: a romualdo.marrazzo@isprambiente.it, b farizio.vazzana@isprambiente.it

The Seveso III Directive 2012/18/EU, implemented in Italy by a legislative decree issued in 2015 (D.Lgs. 105/2015), imposes an obligation to provide a plan for monitoring and control of risks related to ageing of equipment and systems that can lead to loss of containment of hazardous substances, including the necessary corrective and preventive measures. In order to frame the issue, an overview of the Italian law and national standards and guidelines concerning ageing and asset integrity is given, also focusing attention on the role of Public Authorities in addressing ageing in hazardous installations. The main outcomes of the analysis of some industrial accidents, that recently occurred at Italian “Seveso” establishments, where ageing mechanisms have been identified as a significant cause, in terms of technical and organizational factors, are then presented. Starting from some examples on how organizations manage these problems through specific procedures oriented to the “asset integrity management”, a brief description of the processes and methodologies implemented and a focus on good practices about the methods used to assess industry’s response to ageing issues are proposed. In addition, the paper describes the results, lessons learned and return of experience of Safety Management System inspections, conducted in Italy in the last three years, where weaknesses emerged with reference to ageing and asset integrity of the hazardous installations inspected (deterioration and degradation caused by corrosion, erosion, stress, fatigue).

Keywords: Seveso, Ageing, Integrity, Hazardous, Accidents, SMS, Inspections, Practices.

Benchmarking and Compliance in the UK Offshore Decommissioning Hazardous Waste Stream

Joe Ford1,2, Sean Loughney1,2, Eddie Blanco-Davis1,2, Ava Shahrkhil1,2, June Calder2, David Ogilvie3,4 and Erik MacEachern5

1School of Engineering, Liverpool John Moores University, Liverpool, United Kingdom.
2Health and Safety Executive, Aberdeen, United Kingdom.
3Scottish Environment Protection Agency Aberdeen, United Kingdom.
E-mail: a j.m.ford@2019.ljmu.ac.uk, b s.loughney@ljmu.ac.uk, c e.e.blancodavis@ljmu.ac.uk, d a.shahrkhil@ljmu.ac.uk, e david.ogilvie@sepa.org.uk, f erikmaceachern@gmail.com

The decommissioning sector of the United Kingdom offshore oil and gas industry is growing rapidly due to the number of ageing installations within United Kingdom waters. In line with current United Kingdom requirements, installations must be decontaminated from hazardous waste before any part can be reused or recycled. This hazardous waste must be handled, transported, and disposed of in a way that does not impact safety or the environment. This research project analyses the key issues associated with the handling of hazardous waste during the decommissioning of offshore installations with the United Kingdom Continental Shelf. A comprehensive literature review and analysis of decommissioning close-out reports was conducted to allow for the key issues to be identified. Expert judgements were sought and analysed using an analytical hierarchy process. This study emphasises the need to improve the handling of hazardous materials during the decommissioning process. The clarity of legislative requirements, identification of hazardous materials and sharing of knowledge and experience are areas that require improvement to meet the increasingly stringent environmental and sustainability requirements.

Keywords: Offshore decommissioning, Waste management, Legislation, Analytical hierarchy process, UKCS.
Analysis of Failure Rate and Time of Water Pipes
Failure Removal
Katarzyna Pietrucha-Urbaniak and Barbara Tchorzewska-Cieślak
Rzeszow University of Technology, Faculty of Civil, Environmental Engineering and Architecture, Department of Water Supply and Sewerage Systems, Al. Powstancow Warszawy 6, 35-959 Rzeszow, Poland.
E-mail: a.kpiet@prz.edu.pl, b.barbara@prz.edu.pl

The water supply system operation should be characterized by low operating cost and high operational reliability. The water supply system reliability involves operation with proper conditions so as to guarantee water supply to the recipients. The assessment of the reliability of the water supply system is considered in terms of ensuring the required pressure and the required water quality and at any time convenient to the water recipients. For this reason, the analysis of water supply network failure and related issues is an important issue in assessing the proper functioning of the water supply system. In this work, the analysis of selected factors influencing the failure removal time of water pipes on the example of the water supply system in the south of Poland was presented. The analysis of failure removal time was performed for the following factors: water pipe functions, water pipe material and diameter, type of water supply network, failure and season. The analysis was based on the real operation data obtained from the water company. The presented analysis of the failure removal time in terms of the cost of planned maintenance is an important issue which will allow for failure prediction and the initial estimation of the costs of failure removal, which in turn, will allow for a long-term budget planning in water companies.

Keywords: Failure analysis, Failure time removal, Pipeline failures, Water pipes.
Fault tree analysis results in order to obtain a more reliable understanding of the reliability performance of the motor controller over time. From such detailed reliability research, it has been found that the reliability performance of the motor controller will degrade gradually over time; and among the four functional modules of the controller the control module is most vulnerable, followed by driver module. This could be due to the application of more electronic components and thinner printed lines on the modules.

Keywords: Reliability, Pure electric van, Motor controller, Fault tree analysis, Motor system.

WE4A: 183 16:30 hrs

Reiability Engineering of Electric Vehicle Powertrains: Data Collection and Analysis Based on Products in the Usage Phase
Lea Hannah Guenther1,2, Tobias Scholz2, Friedbert Pautzke1,2, Heiko Fechtner1,2, Benedikt Schmuelling1,2, Nora Schelte3, Semih Severengiz3, Marcin Hinz1,2 and Stefan Bracke1,2

1Chair of Reliability Engineering and Risk Analytics, University of Wuppertal, Germany.
2Electrical Vehicle Institute, Bochum University of Applied Science, Germany.
3Sustainable Technologies Laboratory, Bochum University of Applied Science, Germany.

In recent times, the climate change has a massive impact on the choice of the drive technology of newly developed vehicles. The transformation to a reliable, safe and sustainable powertrain is pursued. The automobile industry is changing accordingly and the market shares of electric and hybrid vehicles have increased significantly. The data of electric vehicle powertrains differs from combustion vehicle powertrains for example in types of measurable and analyzable signals, usage behavior, and influence factors which have an impact on the components and systems of the powertrain.

For the understanding and consideration of real conditions, it is important to collect field data of electric vehicles. To evaluate and improve the reliability, safety and sustainability of electric vehicle powertrains a comprehensive field data based assessment is needed. In this paper the acquisition and the analysis of field data of electric vehicles regarding the reliability, safety and sustainability of electric vehicle powertrains are presented. Requirements for the system architecture as well as data generation, pre-processing and management are outlined.

Keywords: Reliability engineering, Electric vehicle powertrains, Field data, Sustainability, Safety, Influence factors, Usage behavior, Data logging.

WE4A: 190 16:30 hrs

Driving Factors for Driving Simulators A Feasibility Study
Martin R. Skogstad1, Catharina Lindheim1,2 and Gunhild B. Sætren2
1Studio Apertura, NTNU Samfunnsforskning, Norway.
2Business School, Nord University, Norway.

Simulators are used for training purposes in many sectors where humans are required to perform in a safe and reliable manner and the costs and consequences of accidents are high (e.g., aviation, nuclear, oil and gas). Driving simulators are sparsely used in driver training, even though performing in a safe and reliable manner is without a doubt of high importance, and traffic accidents are among the most common cause of deaths around the world. This paper evaluates the factors influencing the development towards increased use of simulators in driving training, both enablers and barriers, discussing both current condition and future scenarios. Four different fidelity levels in driving simulators are presented; very low, low, medium, and high, and scenarios where these are used are discussed. The conclusion of the feasibility study is that there exist several potential markets for all four levels of fidelity in simulators, particularly set by demographic parameters and simulator content. The exploitation of this market depends strongly on the suppliers’ willingness to adapt their product to market-specific needs and opportunities. Many simulator solutions reduce interaction between student and instructor. However, the driver instructor is still considered important in forming the student’s holistic understanding of driving, road attitude and understanding of risk.

Keywords: Driving simulator, Training, Feasibility study, Enablers, Barriers, Technology adoption.
Simulation of Parallel Layered Air Cooling Thermal Management System for Li-ion Batteries
Pengbo Zhanga, Huina Mub, Shijie Weic, Xiaojian Yid and Yuhang Cuie \footnote{School of Mechatronical Engineering, Beijing Institute of Technology, China. E-mail: a3120190265@bit.edu.cn, bmuhuina@bit.edu.cn, c3220190156@bit.edu.cn, dyixiaojian@sina.cn, e3120200184@bit.edu.cn}

Battery thermal management structure design is an important measure to ensure high reliability and long life of battery. This paper combines the advantages of parallel ventilation and layered air channels and proposes a new parallel layered air cooled structure to improve the heat dissipation effect of the battery pack. The structure uses thermal conductive partitions to divide the air channel into upper and lower parts, and adopts a design where two independent fan channels work simultaneously. The upper and lower channels adopt reverse Z type ventilation. Firstly, the anisotropic heat transfer model of Li-ion battery is established based on the heat generation theory. Then, combined with the heat transfer model, the influence of different flow directions on the heat dissipation performance is studied by using FLUENT simulation software. Finally, the thermal management structure proposed in this paper is improved and optimized. The results show that the maximum temperature and the maximum temperature difference of the battery pack decrease after using the parallel layered air cooling structure, and the temperature field distribution of the battery pack is obviously improved; after increasing the number of outlets, the maximum temperature of the battery pack decreases by 9.55%, the maximum temperature difference decreases by 16.56 and the heat dissipation performance is further improved.

Keywords: Li-ion battery, Layered air cooling, Thermal management, Dissipate heat, Structural optimization, FLUENT.

Supplementing Fault Trees Calculations with Neural Networks
Victor Bolbota, Christos Gkerekosb and Gerasimos Theotokatosc \footnote{Maritime Safety Research Centre, NAOME, University of Strathclyde, United Kingdom. E-mail: avictor.bolbot@strath.ac.uk, bchristos.gkerekos@strath.ac.uk, cgerasimos.theotokatos@strath.ac.uk}

The use of artificial intelligence algorithms is rapidly gaining ground in engineering applications, including safety engineering. In this paper, we investigate the possibility of using neural networks to supplement fault trees in the safety analysis for the estimation of reliability and importance metrics. For this aim, we employ data from an existing fault tree that models cruise ships blackouts to train a neural network that uses base-event probabilities as input and outputs the estimated top-event probability/frequency. This is done to reduce computational time, as the fault tree model has an extensive number of basic events and is thus computationally demanding. The information that is used as input to the Fault Tree is randomly sampled from a Sobol sequence and is used to estimate the top event probability. The resulting data cloud that corresponds to the fault tree’s input-output pairs, is used to train the neural network. The two models, i.e. the probabilistic and the neural network model, are compared to each other in terms of accuracy and computational cost correlated with the number of sampling points that is used. The Fault Tree is developed in Matlab/Simulink and the neural network in Python. For case where the Neural Network is trained using 30,000 points, a 350 times decrease in computational cost is observed compared to the fault tree model, while the mean absolute percentage error (MAPE) remains at under 15%. Based on the results, recommendations for the application and future improvement of the artificial intelligent algorithms in the specific context are made.

Keywords: Neural networks, Fault tree, Blackouts, Machine learning, Safety engineering, Metamodeling.
Prioritization of Culvert Maintenance Combining Multi Criteria Decision Models and Data Mining Techniques
Francesca Marsili and Jörg Bödefeld
Section of Infrastructure Management, Federal Waterways Engineering and Research Institute, Germany.
E-mail: a francesca.marsili@baw.de, b jorg.boedefeld@baw.de

A current challenge of modern societies is to keep aging infrastructure systems operative and in good condition. Given limited maintenance resources, a risk-based approach to the prioritization of maintenance actions is required. Multi Criteria Decision Models are suited for this task because they allow a combination of qualitative and quantitative information about several risk indicators which are also characterized by different unit measures. However, complex decision problems characterized by too many alternatives, attributes, and criteria are difficult to be tackled. Therefore, methods are required which support and simplify the application of these models for the risk assessment of aging infrastructures. This paper proposes the integration of Multi-Criteria Decision Models with Data Mining techniques. A cluster analysis based on the K-medoids algorithm is carried out in order to reduce the number of alternatives and identifying those which dominate or are dominated within the decision problem. The SMARTS model is then applied in order to aggregate single-attribute utility functions and compute the preferences over the alternatives. The proposed approach is applied to a system of aging culverts of the German waterways network. Results show that the proposed procedure allows a quick but comprehensive and easy to interpret risk assessment of aging infrastructures. These represent the next steps of this research.

Keywords: Maintenance backlog, Risk-based maintenance, Multi-criteria decision models, SMARTS, Data mining, K-medoids algorithm.

Deep Reinforcement Learning-Based Maintenance Decision-Making for a Steel Production Line
Waldemiro Ferreira Neto1,*, Cristiano Cavalcante1,3 and Phuc Do2
1RANDOM, UFPE, Brazil.
E-mail: a c.a.v.cavalcante@random.org.br,
b c.a.v.cavalcante@random.org.br
2Lorraine University, CRAN, France.
E-mail: phuc.do@univ-lorraine.fr

In the 4.0 industry, the adoption of system monitoring technologies provides a large amount of data about the health of the system, which raises a challenge to adopt condition-based maintenance (CBM). Due to its capability to act into the system in real-time based on its embedded condition monitoring equipment, which can help to reduce O&M cost and enhancing the system availability, CBM has become a relevant approach for industry competitiveness. However, to take the advantages of huge data in maintenance decision-making, an important issue to be considered is the large space of states and actions, which is difficult, even impossible, to cope with the traditional maintenance model. To overcome this issue, integrating emerging tools of Machine Learning and Artificial Intelligence into maintenance decision-making and optimization seems to be promising. Therefore, this work proposes a Deep Reinforcement Learning (DRL)-based maintenance optimization for a steel production line, in which the maintenance decisions are made based on the real-time data about the system condition. The production line under study uses metal scrap as the raw material for the steelmaking. Before its usage, the scrap needs to be crushed in a shredder machine, which is the most crucial process. An intermediated buffer is used to keep supplying crushed scrap for the remaining stations when the machine is turned off for maintenance actions. A simulation model is built to simulate the dynamic of the production line. A DRL framework is then built to learn through the interactions with the environment in finding the optimal maintenance policy with lowest maintenance cost. A numerical case study is performed to evaluate the proposed DRL maintenance approach comparing with conventional maintenance policies. As result, the proposed DRL approach shows a better result in terms of cost along with the increase of the system availability.

Keywords: Deep reinforcement learning, Maintenance, Steel production line, Simulation model.
A Method based on Gaussian Process Regression for Modelling Burn-in of Semiconductor Devices
Piero Baraldi1, Stefano Medici1, Ibrahim Ahmed1, Enrico Zio1,2 and Horst Lewitschnig3
1Energy Department, Politecnico di Milano, Milan, Italy
2MINES ParisTech, PSL Research University, CRC, Sophia Antipolis, France.
E-mail: a piero.baraldi@polimi.it, b stefano1.medici@mail.polimi.it, c ibrahim.ahmed@polimi.it, d enrico.zio@polimi.it
3Infineon Technologies Austria AG, Siemensstrasse 2, 9500 Villach, Austria.
E-mail: horst.lewitschnig@infineon.com

Burn-in is a systematic screening method to ensure the reliability of semiconductor devices. It consists in the operation of the manufactured devices under accelerated stress conditions, such as high temperature and voltage. The aim is to remove the devices that would fail in the initial portion of the bathtub curve of the failure rate and estimate the corresponding Early Life Failure Rate (ELFR) value. In practice, performing burn-in is costly and time-consuming, particularly for new technologies. In this context, the present work aims at developing an Artificial Intelligence (AI)-based method to: i) predict the number of defective semiconductor devices within a production lot by resorting to signals measured during the production process; ii) estimate the early life failure probability of the manufactured devices.

The method combines: a) dimensionality reduction by Principal Component Analysis (PCA) for the extraction of features characterizing the production process from the measured signals and b) Gaussian Process Regression for the prediction of the number of defective devices in the lot.

The method is applied to artificial data simulated to emulate burn-in process data. The obtained results show a satisfactory accuracy in the prediction of the number of defective devices in the lot and of the corresponding early life failure probability.

Keywords: Burn-in, Early life failure rate, Gaussian process regression, Principal component analysis, Semiconductor devices, Clopper-pearson test.

Coupled Numerical Model CFD-DEM of Debris Flows Impact to Improve the Vulnerability Quantification of Structures
Rime Chehade1, Bastien Chevalier1,2, Fabian Dedecker2 and Pierre Brelu1
1Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France.
E-mail: a rime.chehade@uca.fr, b bastien.chevalier@uca.fr
2Itasca Consultants SAS, 29 Avenue Joannes Masset, F-69000 Lyon, France

Debris Flows (DF) are dangerous events that can cause up to the complete destruction of structures (buildings, bridges...). They represent high risk for the public safety.

We developed a numerical model to evaluate the impact pressure (P) of mass flows by better describing the effect of boulders: the boulders' size strongly influences the impact pressure, which has a considerable effect on the structure’s damage [1]. The model can help for the design of civil protection measures by quantifying the vulnerability of the structures.

The numerical model proposed considers a one-way coupling granular-fluid model based on a Distinct Element Method (DEM), using separated Computing Fluid Dynamics (CFD) calculation results for the fluid phase. This model estimates the impact of the boulders at the pillar’s local scale (Fig. 1). The pressure due to fluid phase can be added afterwards. These measures were validated by empirical models [2]. The vulnerability of the structure depends on the intensity of DF: P is chosen as an intensity that indirectly integrates the height, velocity and boulder’s size of DF [3]. An improvement of the existing vulnerability function is proposed based on our simulations considering a new parameter as the maximal diameter d_{max}: we will be able to estimate the value of the pressure (therefore vulnerability) taking into account d_{max}. These results help engineers to prepare defense structures and to build advanced engineering solutions based on the boulder’s size for the prevention and mitigation of risks caused by different flows.

Keywords: Debris flows, DEM, CFD, Impact pressure, Damage, Vulnerability.
Performance of the Sediment Control Dams Built After the 1999 Debris-Flow Disaster in Vargas

Jose Luis Lopez
Institute of Fluid Mechanics, Engineering College, Universidad Central de Venezuela, Caracas, Venezuela. E-mail: lopezjoseluis7@gmail.com

The state of Vargas, in northern Venezuela, was devastated by multiple landslides and debris flows in December 1999. In a period of 8 years (2001-2008), 63 check dams were built by government authorities to protect the downstream population. The main function was to retain and sort the sediment material. A few of them were built to stabilize the river bed (consolidation dams). Basically, 37 of the structures are closed-type dams and 26 are open dams (slit, window or beam type). Regarding the construction material, 44 dams were made of gabions, 14 of concrete, three of steel (beam or beam type). Regarding the construction material, 44 dams were made of gabions, 14 of concrete, three of steel (beam or beam type).

In this paper, a critical review of the performance of the check dams is attempted, based on 20 years of experience (field observations and topographical surveys). The morphodynamic effects in the channel beds after dam construction are discussed and summarized.

Dams were tested by two subsequent floods in 2005 and 2010, where thirteen dams retained about 300,000 m3 of sediment protecting the towns of Maiquetia and Camurí of a new disaster. However, some dams were affected by the floods. Two gabion dams in Anare were destroyed by lateral bypassing of the flows. Another gabion dam in Caraballeda collapsed by scouring of a lateral abutment (Fig.1). Partial damages have also been observed in some structures due to abrasion of concrete coating and removal of gabion rows by rock impacts. Most of the dams were subjected to a rapid pace of sedimentation, even the open dams, due to large sediment yield and woody debris transported by the flows that clogged the openings. However, a partial self-cleaning process has taken place in some of the slit and beam dams. Additionally, channel degradation has occurred in some downstream reaches caused by the “hungry water” effect due to the interruption of bed load transport as sediment was being trapped upstream. Significant bed erosion, between 2 and 4.5 m has been measured at the foot of a few dams. In some cases bed lowering has been caused by downstream gravel extraction activities.

In conclusion: a) Six dams and three counter dams have been totally or partially destroyed by subsequent floods; b) Three dams are in imminent danger due to significant bed lowering at the foot of the structure; c) all closed dams (37) are already full of sediment, so they cannot mitigate future debris flows; d) maintenance has been poor or almost inexistent; e) in most cases no access roads for machinery and equipment were provided to remove the sediment material retained in dams; f) a feasibility study is required to analyze which one is the best solution: removing the accumulated sediment upstream of the structures or building new dams; g) the presence of the control works (dams and channels) has created a false sense of security and new houses have occupied the river banks. Efforts have to be made to improve land use regulations and enforce the law to prevent reoccupation of areas subject to high levels of hazard.

Keywords: Debris flows, Vargas, Venezuela, Check dams, Performance.

Optimizing Recovery Strategies for Interdependent Lifeline Systems Exposed to a Natural Hazard

Hugo Rosero-Velasqueza and Daniel Straubb
Engineering Risk Analysis Group, Technische Universität München, Munich, Germany. E-mail: ahugo.rosero@tum.de, bstraub@tum.de

Natural hazard events can lead to large-scale failures in lifeline systems. By enabling a fast recovery of these systems following failure events, one enhances their resilience. However, this resilience also comes at a cost, e.g. if additional repair crews need to be hired. In this contribution, we present a work towards the identification of a robust recovery strategy that optimizes the trade-off between the downtime and losses on the one hand and the cost for enhancing resilience on the other. We use a simplified model of the network [1] and simulate system failure events [2] based on a stochastic set of natural hazard scenarios. We employ the frameworks described in [3,4] for modelling the system recovery, and identify the relation between recovery costs and the losses associated with system downtimes. Furthermore, we investigate the influence of the interdependence between lifeline systems in identifying the optimal recovery strategy. We illustrate the methodology with an example of interconnected power and water networks exposed to a seismic hazard.

Keywords: Resilience engineering, Critical infrastructure, Lifeline systems, System recovery, Network analysis, Interdependent systems, Resilience cost.
Integrating Imperfect Information in the Deterioration Modeling of Torrent Protection Measures for Maintenance and Reliability Assessment

Nour Chahrour1, Jean-Marc Tacnet1,2 and Christophe Bérenguer1,2

1 University Grenoble Alpes, INRAE, ETNA, 38000 Grenoble, France
2 University Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, 38000 Grenoble, France

E-mail: a nour.chahrour@inrae.fr, b jean-marc.tacnet@inrae.fr, c christophe.berenguer@grenoble-inp.fr

Among several types of natural risks’ protection measures, check dams are the most dominant in French mountains. Over their lifetime and while being subjected to severe phenomena such as torrential floods, the check dams’ efficacy will be affected and therefore the level of protection provided by these structures will be reduced. Available budgets oblige risk managers to establish priorities between different maintenance strategies to be applied on structures that require maintenance. Modeling the dynamic deterioration of check dams and making decisions on their maintenance always depend on the amount of available data, diverse sources of data, assumptions, etc. This paper focuses on assessing the influence of uncertain inputs on the outputs obtained from a check dam’s deterioration and maintenance model. The end purpose of such analysis is to support check dams’ maintenance decision-making under the effect of information imperfection.

Keywords: Natural risk, Check dams, Deterioration modeling, Efficacy assessment, Maintenance decision-making, Information imperfection.

Causes of Failure of Experimental Molten Salt Research Device

Michal Cihlar1,2, Dana Procházková1,2, Pavel Zácha3, Jan Prehradný1,2, Vaclav Dostál1,2, Martin Mareček2 and Jan Uhlíř2

1 Department of Energy Engineering, CTU in Prague, Czech Republic.
2 Nuclear Fuel Cycle Department, Research Centre Řež, Czech Republic.
3 Department of Energy Engineering, FME CTU in Prague, Czech Republic.

E-mail: a michal.cihlar@fs.cvut.cz, b danuse.prochazkova@fs.cvut.cz, c vaclav.dostal@fs.cvut.cz

In today’s practice, molten salts are used in thermal energy storage technologies, solar tower technology, and the development of Generation IV nuclear reactors. The paper deals with the construction of an original experimental device for the research of the physical and chemical properties of molten salts, the behavior of molten salts, and corrosion effects of molten salts on various construction materials built in the Research Centre Řež. Due to experience with the first device construction, the risk-based design was chosen for the final device. The procedure of risk-based design is described. Based on this analysis, the critical points of the device were identified, the geometric modifications were made to the structure, and, with the help of the CFD tools, three modes of operation were established: normal, abnormal, critical in the event of a power outage. Resulting changes together with precisely defined operating regulations ensure safe construction, operation, and maintenance of the experimental device.

Keywords: Molten salt, Device failure, Risk-based design, Risk-based operation, CFD tool, Checklist, Reconstruction, Molten salt loop.
In a working situation on an automated assembly machine, technical drifts during operation can lead to machine dysfunctions. These dysfunctions may cause the operator supervising the machine to adapt and respond to reduce the effect of these technical drifts on the rest of the working situation. To respond to these dysfunctions, the operator may expose him or herself to hazards and thus be in a hazardous situation. (Lamy & Perrin, 2020) showed the feasibility of identifying this kind of potentially hazardous situation by observing the working situation. Here, we propose a method called Working Situation Health Monitoring (WSHM). The goal of this method is to identify these potentially hazardous situations by analyzing the potential drift of working situations and monitor the advent of potentially hazardous situations using equipment and production data. It consists of three steps: firstly, we model the working situation studied to characterize the nominal working situation; secondly, we analyze cause-and-effect relationships between potential process drifts, potential operator responses and potentially hazardous situations; and thirdly, we construct a health indicator of the working situation based on knowledge of potentially hazardous situations identified in the second step and by equipment data. This paper also presents the application of the method to a case study (an educational automated assembly machine).

Keywords: Occupational safety, Dysfunctional analysis, Work situation, Technical drift, Human-Machine interactions, Human error, Hazardous situation analysis, System modeling.
In general, wear is caused by high mechanical forces acting on the cutting tool and the high temperatures generated by these forces. The mechanical and thermal loads depend on various parameters, such as the material of the cutting tool, the material of the workpiece, the cutting speed, the feed rate, the cutting fluid or the ambient conditions. To estimate the mechanical and structural reliability of the cutting tools, images of the teeth from different stages are analysed (after the cutting process and pregrounded). Depending on the sawn material, a rating can thus be made on the degree of wear and the remaining service life. The colour gradient of the images is determined and statistically evaluated in order to draw conclusions about the type of wear and defects of the cutting tool. The tool geometry of the teeth is recorded from different perspectives. Through the formation of characteristic values, a simple evaluation method of the tool reliability is presented. This research work contributes to the image based analysis of machining processes and wear behaviour of cutting tools using statistical methods that allow comparability. In this process, important knowledge is gathered with regard to the degradation behaviour and the prediction of the service life of cutting tools.

Keywords: Manufacturing, Cutting tools, Image analysis, Mechanical and structural reliability.
Web App to Support Hazard Identification of Oil Refineries

July Macêdo, Diego Aichele, Márcio das Chagas Moura and Isis Limeira

Center for Risk Analysis and Environmental Modeling, Department of Industrial Engineering, Universidade Federal de Pernambuco, Brazil.

E-mail: julymacedo@gmail.com, diego.aichele@eng.whclle.cl, marcel@ceerma.org, isa@liveceerma.org

Hazard identification is one of the first steps of Quantitative Risk Analysis (QRA) and it is crucial to ensure the quality of the analysis. However, this step is very time consuming, especially for complex systems such as oil refineries, because risk expert need postulate all the accidental scenarios. Thus, this process relies on examination of a variety of engineering documents and the attendance to numerous meetings. The hazards identified are usually recorded in form of textual data; thus, these documents store valuable information about the risks related to the analyzed system and that was widely discussed by experts. Natural Language Processing (NLP) allows extracting, organizing, and classifying information from text. For this reason, NLP was applied to build models to retain specialists' knowledge that can be lost overtime. Therefore, we developed HALO, a web app to support risk analyst in identifying and assessing different accident scenarios related to chemical spills in oil refineries. The app was built on valuable information gathered from past risk studies, allowing experts to use that entire source of knowledge in the early stages of QRA. In summary, the app contains NLP-based classifiers able perform different multi-classification tasks to identify three risk features: 1) potential consequences related to the operation of an oil refinery, and to classify each accidental scenario in terms of 2) severity of the consequence and 3) likelihood of occurrence. Moreover, the app displays visual outputs, including word clouds for the description of similar systems found in our database and a bar chart to illustrate the distribution of the potential consequences related to chemical spills in similar systems. These visual outputs summarize the knowledge contained in previous risk studies and allow the user (risk analyst) to gain insight into the analyzed system. Thus, it will be possible to support risk analysts to complete the early stages of a QRA.

Keywords: Risk analysis, Text mining, Natural language processing, Oil refineries, Web app, Major accidents.
Towards a Relational Model for Collaborative Safety and Security Risk Assessment Processes

Sadok Rayan Aktouche1,2,3, Mohamed Sallak1,2, Abdelmadjid Bouabdallah1,2 and Walter Schön1,4
1Institut de Recherche Technologique Railenium, F-59300, Fanns, France
2Université de technologie de Compiègne, CNRS, HEADAG (Heuristics and Diagnosis of Complex Systems) CS 60113-60203 Compiègne Cedex France.
E-mail: rayan.aktivus@railenium.es, mohamed.sallak@kit.eu, abdelmadjid.bouabdallah@kit.eu, walter.schoen@kit.eu

Risk assessment is an important issue in cyber-physical systems as they confronted to risks with accidental and malevolent origins. These risks fall respectively under the banners of Safety and Security and each discipline has a distinct set of practices for risk assessment and risk analysis. However, the growing need to combine and bring together risk assessment processes from safety and security has led us to look for ways to join the processes and thus deal with the various interactions between safety and security. We observed that risk assessment processes from safety and security dealt with several entities that sometimes overlap and that sometimes are linked together (such as feared events, requirements, risks, threats, countermeasures, etc.). We took interest in identifying these entities and the relationships that can occur between them in a relational model that would describe a Safety and Security joint risk assessment process. In this paper, we present our relational model to constitute a knowledge base effectively to answer questions about Safety and Security risk interactions.

Keywords: Safety, Functional safety, Security, Cybersecurity, Risk analysis, Risk assessment, Relational model.

A Predictive Model for Quantitative Assessment of Aviation Terror Incidents Based on Geo-Political Environment

Stanislav Bukhman⁴, Mario P Brito and Ming-Chien Sung
Centre for Risk Research, Southampton Business School, University of Southampton, Southampton, SO17 1BJ, United Kingdom.
E-mail: a.bukhman@soton.ac.uk

Over the past 20 years the aviation industry demonstrated significant growth from 1.5 billion passengers travelled by air in 1998 to more than 4.3 billion in 2018. Managing security risks remain a significant challenge in the aviation industry because security events are rare and thus harder to predict (Cliton et al, 2013). Industrial regulations of International Civil Aviation Organization (ICAO, 2013) and International Air Transport Association (IATA, 2019) require air carriers to conduct risk assessments. They, however, do not provide specific tools or standards for it.

At the same time, aviation stays an attractive threat for international terrorism. Since the attacks of September 11, 2001 that triggered most drastic changes in aviation security, a number of terror attacks against aviation involving casualties as well as foiled attempts occurred. Besides terror related events, several fatal incidents related to shooting at the civilian aircraft by surface-to-air missiles occurred.

In the past the spread of security related information was via traditional media. Therefore, the approach to assessment of threats was rather reactive due to limits in speed of information spread, the method of analysis and the distribution of information about potential risks for air operations (Cullen, 2014). Currently, information about terror attacks, wars or conflicts is instantly available through various internet channels, turning threat assessment to proactive and predictive ways. However, the most popular methodologies for threat assessment used by the industry are qualitative (‘low’, ‘medium’, ‘high’) and subject to misinterpretation by users (Renoouj and Wittman, 1999). Therefore, this study explores the potentials to employ a quantitative approach. United Nations (UN) lists several factors that influence aviation security such as economic threats, internal and inter-state conflicts, terrorism and organized crime (UN, 2004). This paper examines how these factors influence security related incidents and develops a threat assessment model to predict the likelihood of terror incidents. The data employed includes 1079 cases of hijacking, 90 cases of bomb sabotage and 276 cases of surface-to-air shooting at aircraft between 1947 and 2018. The proposed methodology can complement the existing methodologies for aviation security risk assessment.

Keywords: Risk, Aviation, Security, Threat assessment, Quantitative, Predictive model.
In the article, we focus on the residual contamination of surfaces with toxic agents, namely, on ways to model the measured residuals and on its statistical properties, which can serve as a basis for an automation procedure.

The efficiency of decontamination is assessed by point detectors, which is conditioned by finding contaminants on a contaminated person. An implementation of contamination control chambers with a suitable chemical detector able to perform analysis of contamination residuals was proposed. Based on the experimental results, optimal conditions for residual contamination control with the selected detector were introduced. And operation procedures for running a check on the decontamination efficiency in the contamination control chamber for Integrated Rescue Systems were introduced.

The objective of this paper is to determine if there is statistical evidence for different behavior of the contaminant detection under different ambient conditions. Even though we are limited by the pieces of information available, we want to present a statistical evaluation, which shows possible ways of modeling.

The data are measured at discrete time points, although they represent a continuous function. Therefore, we introduce a functional data analysis approach. Functional data analysis deals with the data in their general form, i.e., with data in the form of curves or images. In our analysis, we employed parametric and nonparametric regression models to convert discretely measured data into a functional form. Then, we constructed a mean and variance function for the respective measurement conditions. The tests directed to validation of significant differences showed that a certain level of discrepancy is present; however, they are only in partial accordance with results given within the experiment description, namely, in terms of the ambient temperature and type of the toxic agent.

Keywords: Residual contamination, Regression model, Functional data, Non-parametric statistics.
problem is to find the set of all Pareto solutions.

On the other hand, the problem of evaluating all-
terminal reliability of a given network is computa-
tionally intractable (Koide 2002), which suggests that our bi-objective problem is also computationally intractable. Therefore, Takahashi et al. (2018) provided a Genetic Algo-
rithm (GA) to find a set of quasi-Pareto solutions. However, this algorithm needed much running time when the number of nodes was large.

In this study, we propose a GA algorithm which finds non-dominated solutions close to Pareto solutions. Pro-
posed algorithm reconsiders the selection process to select all nondominated solutions and “good” solutions as parents in each generation. In addition, we analyze the GA process, and the crossover process reflects not only component cri-
tera but network configuration. And then, the accuracy of our proposed algorithm is evaluated based on comparison with other algorithms.

Keywords: Network design problem, Bi-objective network, All-terminal reliability, Quasi-pareto solutions, Genetic algorithm.

TH1B: 653 10:00 hrs
Drone Fleet Evaluation by Structure Function based Method
Elena Zaitseva1,2*, Patrik Rusnak1,2, Miroslav Kvasnay3,4, Vitaly Levashenko4,5, Jozef Kostolny3,5, Nicolae Britzea1,2, Maryam Ospanova3, and Marina Yelis3
1Department of Informatics, Faculty of Management Science and Informatics, University of Zilina, Universitšska 8215/1, 01 0 26 Zilina, Slovakia.
E-mail: *elena.zaitseva@fri.uniza.sk, peter.sedlacek@fri.uniza.sk, miroslav.kvasnay@fri.uniza.sk, vitaly.levashenko@fri.uniza.sk, jozef.kostolny@fri.uniza.sk
2University of Lorraine, CNRS, CRAN, F-54000 Nancy, France.
E-mail: nicolae.brinzei@uni-lorraine.fr
3Institute of Cybernetics and Information Technology, Kazakhstan National Research Technical University after K. I. Satpay, Satbaev str., 22, 050 013, Almaty, Kazakhstan.

One of new devices in the monitoring is unmanned aerial systems (UAS) or drones which can be used of danger-
ous and inaccessible territories monitoring. The approaches for the decreasing of the failure rate should be developed. This investigation can be implemented based on method and approaches of reliability engineering. The first step in the reliability analysis is development of the mathematical model of the investigated system. In this paper the repre-
sentation of the fleet drone is considered as the k-out-of-n system. The analysis of this mathematical model is imple-
mented by the structure function based mathematical meth-
ods. The calculation of the availability, unavailability and some importance measures are considered.

Keywords: Availability, k-out-of-n system, Reliability analy-
sis, Structure function, Drone.

TH1C: 095 09:00 hrs
Online Estimation of Resource Overload Risk in 5G Multi-Tenancy Network
Yasmeen Shihab Hamad1,2, Bin Han2 and Osman Nuri Ecal1,2*
1Faculty of Engineering and Natural Sciences, Altinbas University, Turkey.
E-mail: *yasmeen.hamad@ogr.altinbas.edu.tr, osman.ecal@altinbas.edu.tr
2Division of Wireless Communications and Radio Positioning, University of Kaiserslautern, Germany.
E-mail: binhan@eit.uni-kl.de

The technology of network slicing, as the most character-
istic feature of the fifth generation (5G) wireless networks, manages the resources and network functions in heteroge-
neous and logically isolated slices on the top of a shared physical infrastructure, where every slice can be independ-
ently customized to fulfill the specific requirements of its devoted service type. It enables a new paradigm of multi-tenancy networking, where the network slices can be leased by the mobile network operator (MNO) to tenants in form of public cloud computing service, known as Slice-as-a-Service (SlaaS). Similar to classical cloud computing scenarios, SlaaS benefits from overbooking its resources to numerous tenants, taking advantage of the resource elastic-
ity and diversity, at a price of risking overloading network resources. Thus, it becomes a critical challenge to the MNOs, accurately estimating the resource overload risk - especially under the sophisticated network dynamics - for monitoring and enhancing the reliability of SlaaS business.

While existing literature are mostly considering over-
simplified models of slice resource load, in this paper we propose a novel approach assuming a Markov-Truncated-
Gaussian-mixture model, which is capable of accurately approximating any practical resource load distribution. The proposed approach is demonstrated by numerical simula-
tions to be effective and accurate.

Keywords: Outage control, Modeling, 5G, Network slicing, Multi-tenancy, Estimation.
A Hierarchical Predictive Maintenance Model for Networks
Zhenglin Liang and Yan-Fu Li
Industrial Engineering Department, Tsinghua University, Address, Shunyi Building 605, Tsinghua University, Beijing. E-mail: zhenglinliang@tsinghua.edu.cn

Nowadays, with the emerging of enabling techniques, such as digital sensing, big data, machine learning techniques, predictive maintenance becomes a prevalent topic in system reliability. The blooming of the related research has already caused multiple paradigm shifts, such as industry 4.0 and digital manufacturing. Could predictive maintenance also shed light on resolving the problem at the network level and bring real value for servicing the macro-characteristics network is an essential question that to be answered. This research aims to design a hierarchical approach that enables scaling-up the effect of predictive maintenance to benefit systemic maintenance, and in turn, serve the network macro-characteristics. The hierarchical model integrates the component, system, network knowledge in a layered fashion. Such that, the model contains both actionable details and macro-characteristics.

At the component-level, we model the deterioration process of components as a multi-state multi-path stochastic process. We develop a novel approach for predicting the reaching time of the optimal condition for maintenance, based on the information from inspections. At the system-level, we highlight the heterogeneity of components in the system model. More often than not, practical systems are composited by multiple components whose downtime or failure might have different impacts on system performance. We employ the predicted information from the component-level to construct a group maintenance strategy. Components’ maintenance activities will be actively grouped together for sharing the set-up cost and downtime. Different maintenance strategies may require different costs and result in different system performance. We utilize a genetic algorithm with agglomerative mutation (GA-A) for evaluating and optimizing the group maintenance policies to meet the different requirements of system performances. At the network-level, we consider the network is composed of multiple systems and select the system performance for satisfying the macro-characteristics. In such a way, predictive maintenance at the component level can support the decision making at the system level and subsequently serve the network. The overall approach will be applied to the transportation network. In practice, the transportation network is composed of multiple systems such as bridges, roads, and tunnels, which are composed of components such as concrete decks, wingwalls, and joints. It matches the model description.

Moreover, macrocharacteristics, such as connectivity and resilience, have important practical meaning in the transportation network.

Keywords: Predictive maintenance, System engineering, network, Group maintenance.

Maintenance Optimization of Networked Infrastructures Considering the Component Distribution Uncertainty: A Deep Reinforcement Learning Approach
Wanshan Lia and Chen Zhangb
Department of Industrial Engineering, Tsinghua University, Beijing, P.R. China. E-mail: liws16@mails.tsinghua.edu.cn, zhangchen01@mail.tsinghua.edu.cn

The continued effective performance of networked infrastructures, such as telecommunication systems, is an issue of worldwide concern. Cost-effective maintenance is essential to ensure the system reliability of keeping the prescribed service quality continuously satisfied. In addition to the influence of maintenance actions on the system reliability when they are being conducted, the influence on the components’ failure distribution after maintenance, is also need to be considered. To deal with this problem, the multi-period optimization of an infrastructure’s maintenance planning was modeled as a Markov decision process (MDP). Moreover, a deep reinforcement learning (DRL) framework is developed to deal with the computation complexity of the objective function of the large-scale networked system and solve the described problem.

The main advantages of the proposed maintenance planning approach is fourfolded: (1) the maintenance influence on both system and component distribution are considered, which is more practice in the real world, (2) a customized deep neural network (DNN) is employed to learn the network feature, which is dependent on the optimization objective, as well as the state-action Q-value (defined as the predicted discounted expectation of the reward under a given state-action pair); (3) the reward of a policy could be model-free, and can be directly learned from real historical data; and (4) the framework is robust for different network topologies and objectives, so that only slight change to the neural network architecture is desired.

Keywords: Networked systems, Maintenance, Markov decision process, Distribution uncertainty, Deep reinforcement learning.
Robust optimization for network restoration under demand uncertainty
Chuanzhou Jia and Yan-Fu Li
Department of Industrial Engineering, Tsinghua University, Haidian District, Beijing, 100084, P. R. China.
E-mail: ajiacz17@mails.tsinghua.edu.cn, blyanfu@tsinghua.edu.cn

With the development of science and technology, networked infrastructure systems, such as telecommunication networks, are indispensable to society (Brown, et al., 2006). The networked infrastructures confront huge threats, such as natural disasters, deliberate attacks, etc., therefore we must consider post-disaster restoration work. For the restoration of networked infrastructure, two factors must be simultaneously considered. One is that the components in the network are geographically distributed, and the other is that the flow transmitted in the network is related to the restoration states of the network. Since these components are geographically distributed, vehicle routing must be considered. In addition, the network flow scheduling and the demands of each customer must be considered. For this purpose, we propose a robust optimization model to simultaneously determine the maintenance routes and schedule network flow in the post-disaster restoration. Taking into account the uncertainty of customer demands, we seek to optimize the restoration task within the limited time to minimize the unmet demand of the whole network under the worst case. Finally, we develop an efficient algorithm to solve the proposed problem.

Keywords: Robust optimization, Disaster management, Critical infrastructure, Resilience, Maintenance planning, Workforce routing.

Accident Experience, Subjective Assessment of Risk and Behaviour Among Norwegian Cyclists
An-Magritt Kummeneje and Eirin Olaussen Ryeng
1Department of Mobility and Economics, SINTEF Community, Trondheim, Norway.
E-mail: an-magritt.kummeneje@sintef.no
2Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, Trondheim, Norway.
E-mail: eirin.ryeng@ntnu.no

The aims of the reported study were to examine whether cyclists who had been involved in a traffic accident when cycling subsequently changed their behaviour, and how their experience of the accident was associated with their perceived risk, worry, and trust in authorities. Risk perception focuses on individuals’ subjective assessment of risk, and worry is considered as an emotional reaction when thinking about the risk. Data were collected through an online questionnaire survey (n = 291). The respondents were asked about their accident and near-miss experiences during the last two years, and to rate their perceived risk, worry, and trust in authorities’ ability to ensure cyclists’ safety in summer and winter conditions. The cyclists who had been involved in an accident or near miss were further asked whether they had changed mode of transport, cycle route, or cycling behaviour after the accident. The results showed that there were significant associations between risk perception and worry, and accident and/or near-miss experiences. Additionally, the results revealed that the accident and near-miss experiences had influenced the respondents’ choice of transport mode, and cyclists’ route choice and behaviour when cycling. Finally, perceived risk and worry were found associated with behavioural changes after accident and/or near-miss experiences. The knowledge gained from the study can be used in traffic safety work, through authorities’ risk communications.

Keywords: Cycling behaviour, Traffic accidents, Risk perception, Worry, Trust in authorities, Traffic safety.
Finite State Machine Modelling for The Performance Analysis of An Integrated Road-Power Infrastructure with A Hybrid Fleet of EVs And ICVs

Lida Naseh Moghanlou1,a, Seyed Mojtaba Hoseyni2,b, Francesco Di Maio3,c and Enrico Zio3,e
1Energy Department, Politecnico di Milano, via La Masa 34, 20156, Milano, Italy.
E-mail: lida.naseh@polimi.it, bseymojtabahoseyni@polimi.it, cfrancesco.dimaio@polimi.it, denrico.zio@polimi.it
2MINES ParisTech / PSL Université Paris, Centre de Recherche sur les Risques et les Crises (CRC), Sophia Antipolis, France.
E-mail: enrico.zio@ens--paristech.fr

Electric Vehicles (EVs) penetration in the car market affects the road networks that, to date, are not designed and optimized for a hybrid fleet of EVs and Internal Combustion Vehicles (ICVs). The strong dependency of EVs on the power distribution infrastructure, indeed, calls for an integrated road-power infrastructure. In this work, a Finite State Machine (FSM) approach is proposed for modelling EVs and ICVs motion in an integrated road-power infrastructure. FSM is shown to be a powerful modelling approach that can easily embed realistic characteristics such as drivers attitudes and traffic, but also effects of disruptions induced by natural hazards or traffic incidents when aimed at analyzing the performance, safety and resilience of integrated road-power infrastructures. As a realistic case study, we consider a road network in New York state, and the motion of both EVs and ICVs is simulated in various cases assuming different EVs penetration levels.

Keywords: Electric Vehicle (EV), Internal Combustion Vehicle (ICV), Road network, Power distribution network, Finite State Machine (FSM), Reliability, Safety, Resilience.

A Cascading Failure Model of Rail Transit Based on Application Cell

Kun Chen1,a, Ning Huang1,b and Xiangwei Wu1,c
1School of Reliability and System Engineering, Beihang University, Beijing, China.
E-mail: chenkun1995@buaa.edu.cn, bning.buaa.edu.cn.
2Yunnan Innovation Institute of Beihang University, China

Rail transit system deliver its application by transporting passengers to their destination. Succeed or not of application’s delivery greatly affects the daily operation of it. Current research based on cascading failure mainly focus on the connectivity of network. Researches based on queueing theory, network calculus and BPR function focus on the performance of network. They all take transport process as homogeneous flow and consider the function-based or performance-based structure of network, ignoring that they essentially are applications with multiatributes (such as application classes, application process and so on), and these attributes have great impact on rail transit, which leads that current researches are unable to reflect the reliability from users’ aspects. In this paper, we focus on the cascading failure process of rail transit, one call request of rail transit from a certain passenger is treated as one application. In order to map the features of application, we describe them as application cells, and multiatributes of transport process corresponds to the characteristics of cells. Then, the deliver process of application can be regarded as the interaction among cells in our model. The results of simulation show that our model can effectively depict the process of cascading failure among cells and can help to simplify the complexity of application process. Besides, we find the law that even holding the same amount of burst traffic flow, different application types have various cascading process and totally different network reliability.

Keywords: Rail transit, Congestion, Application cell, Optimization, Traffic model.

Data Oriented Optimization of Predictive Maintenance in Physical Networks : Application of Prioritization in Wastewater Network’s Repairs

V. Couallier1,a, C. Dumont2,b, Cyril Leclerc3 and Jeremie Bigot1,c
1Institute of Mathematics of Bordeaux, Bordeaux University, France.
E-mail: 1vincent.couallier@u-bordeaux.fr, 2jeremie.bigot@u-bordeaux.fr
2ASIO, France.
E-mail: dumont.christophe@gmail.com
3SUEZ Eau France, Le LyRE, France.
E-mail: cyril.leclerc@suez.com

Physical networks, such that potable water distribution networks, sewerage networks, electric networks made of power lines and transformers, telecommunication networks, are fundamental constituents of a complex urban monitored and optimized infrastructure. All these systems share the property of being computerized in a GIS (Geographic Information System), where physical units (pipes, electrical or optic fiber lines) are often buried under roads. It is thus common to consider that preventive renewals are the main maintenance actions of possibly degraded units that constitute the network. In that case, choosing when and where to place the worksites is a challenging problem. The main issue is the inconvenience caused by worksites that should be minimized. That is why a worksite should include a set of neighboring units to be changed simultaneously, as quickly as possible.

This paper proposes a methodology to provide opti-
mized allocation of preventive maintenance budget for worksites. Each potential worksite constitutes a geographical area that contains some units to renew. Each unit is identified by its localization, the indexes of units with which it is connected and some covariates, such that (for our example of a wastewater network) length, material, age, risk priority number, criticality index, probability to fail, etc. With the theory of graph, it is possible to construct a search algorithm that provided ranked potential worksites to investigate.

Keywords: Water networks, Worksite optimization, Simulation, Resource allocation, Breadth-first Search algorithm.

Session [TH1E]—Human Factors and Human Reliability

Day/Date/Time Thursday, 23 Sep. 2021/09:00–10:20 hrs
Venue Amphi Jardin

TH1E: 427 09:00 hrs

Determination of Level of Automation for an Adequate Human Performance

Alaide Bayma\(^1\) and Marcelo Ramos Martins\(^2\)

Analysis, Evaluation and Risk Management Laboratory (LabRisk) Naval Architecture and Ocean Engineering Department, University of São Paulo, Brazil.

E-mail: \(^a\)alaide.bayma@alumni.usp.br, \(^b\)mrmartin@usp.br

The automation system has hugely grown during the last years, and it is the major trend of the 21st century. The automation system can provide superior reliability, improved performance, and reduced costs for many functions. The human-machine design could not be out of this development and technological advancement. Human-machine design takes into account the human factors and human and machine limitations and abilities through the levels of automation. Therefore, it is primordial to consider in the design of such systems, the automation level for adequate human performance. This paper has the purpose to present a preliminary approach for evaluating human performance during a car parking activity with and without car parking assistance (an automated system) and also to analyse the impacts associated with parking assistance in the human error contributing factors. The method for determining the level of automation is based on four generic functions intrinsic to man-machine domain, which’s are: monitoring, generating options, selecting options, and implementing. The human performance analysis is proposed through the Bayesian Networks approach supported by Fuzzy Logic whose application is to model the performance of tasks in a specific level of automation. The result indicated a positive aspect, the activity with a higher chance of occurrence of a human error in procedure without the parking assistance system was the activity with the parking assistance with higher automation level. The analysis recommends that the alarm and panel design should be revaluated since different alarms and equipment are used to offer the same information, causing the make decision slower and complacency. The button which turns on the parking assistance system also is the one that selects three types of manoeuvres; in addition, the throttle can be used for controlling the manoeuvres, and both information should be part of the training before using parking assistance. Despite workload increases with the parking assistance, the human error chance decreases.

Keywords: Level of automation, Human error, Bayesian network, Fuzzy logic and parking assistance.

TH1E: 437 09:20 hrs

Physiological Measurements for Real-Time Fatigue Monitoring in Train Drivers: Review of the State of the Art and Reframing the Problem

Bojana Bjegevci\(^2\), Maria Chiara Leva\(^3\), Nora Balle\(^2\), Sam Cromie\(^4\) and Luca Longo\(^5\)

\(^1\)School of Environmental Health, Technological University Dublin, Ireland.
E-mail: \(^a\)20125631@tudublin.ie, \(^b\)marciahaine.leeva@tudublin.ie
\(^2\)Health and Safety Directorate, Irish Rail, Ireland.
E-mail: \(^b\)Nora.Balle@irishrail.ie
\(^3\)Centre for Innovative Human Systems, School of Psychology, Trinity College Dublin, Ireland.
E-mail: \(^c\)sdcromie@tcd.ie
\(^4\)School of Computer Science, Technological University Dublin, Ireland.
E-mail: \(^d\)luca.longo@tudublin.ie

The impact of fatigue on train drivers is one of the most important safety-critical issues in rail. It affects drivers’ performance, significantly contributing to railway incidents and accidents. To address the issue of real-time fatigue detection in drivers, most reliable and applicable psychophysiological indicators of fatigue need to be identified. Hence, this paper aims to examine and present the current state of the art in physiological measures for real-time fatigue monitoring that could be applied in the train driving context. Three groups of such measures are identified: EEG, eye-tracking and heart-rate measures. This is the first paper to provide the analysis and review of these measures together on a granular level, focusing on specific variables. Their potential application to monitoring train driver fatigue is discussed in respective sections. A summary of all variables, key findings and issues across these measures is provided. An alternative reconceptualization of the problem is proposed, shifting the focus from the
concept of fatigue to that of attention. Several arguments are put forward in support of attention as a better-defined construct, more predictive of performance decrements than fatigue, with serious ramifications on human safety. Proposed reframing of the problem coupled with the detailed presentation of findings for specific relevant variables can serve as a guideline for future empirical research, which is needed in this field.

Keywords: Train drivers, Rail, Physiology, Fatigue, Attention, EEG, Eye-tracking, Heart rate.

THIE: 460 09:40 hrs
SAM-L2HRA: Human and Organizational Reliability Analysis Method for Analyzing Severe Accident Management Strategies and Actions
Jaewhan Kim1, Young A Sub2 and Jinkyun Park3
1Risk Assessment and Management Research, Korea Atomic Energy Research Institute (KAERI), 111, Daejeon-daero 989beon-gil, Yuseong-Dong, Daejeon, 34057 Republic of Korea. E-mail: jkim@kaeri.re.kr, bsk@kaeri.re.kr
2Department of Safety Policy, Korea Institute of Nuclear Safety (KINS), 62 Gwang-su, Yuseong-gu, Daejeon, 34142 Republic of Korea. E-mail: jskshin@kaeri.re.kr, skshin@kaeri.re.kr

Human Reliability Analysis (HRA) is required to evaluate decision likelihood of severe accident management (SAM) strategies and adequately assess the reliability of human and organizational actions, and ultimately to incorporate those results into a Level 2 PSA model. A new Level 2 HRA method (SAM-L2HRA) consists of two parts of analysis: the first part deals with a time uncertainty analysis to the failure of a SAM strategy, of which probability is estimated from the convolution between two time distributions, i.e., time available and time required, and the second part is composed of task-based analysis of error potential or decision-making likelihood [1].

The time elements considered in the time uncertainty analysis include the distribution of time available with consideration of phenomenological uncertainty associated with a severe accident event such as a reactor vessel failure, the time elapsed (or required) (and its distribution) from the entry point into SAMG and to the completion point of implementation of a strategy under consideration.

The task-based analysis part deals with error potential or decision-making likelihood associated with critical steps or activities needed for decision-making and successful implementation of a strategy. The steps or activities to be analyzed include the availability or survivability of essential information needed for recognition of a strategy implementation and monitoring the progress and effectiveness of a strategy implementation, the impact of negative effects associated with a strategy on a decision-making of a strategy implementation and its probability of likelihood, and the reliability of the implementation activity in which coordination and cooperation between distributed organizations such as the technical support center (TSC), the main control room (MCR) and the local operating personnel in charge of actual implementation using installed or portable/mobile equipment are of critical importance.

Keywords: Level 2 HRA, Human reliability analysis, Severe accident management guideline, SAMG.

THIE: 461 10:00 hrs
Investigation of a Domain-Specific Culture Shared by Operator Groups in Nuclear Power Plants
Seung Ki Shin1, Jaehyun Cho2 and Jinkyun Park3
Korea Atomic Energy Research Institute, Republic of Korea.
E-mail: aokshin@kaeri.re.kr, cchojh@kaeri.re.kr, skshin@kaeri.re.kr

The performance of human operators has a major impact on the safety of complex socio-technical systems such as nuclear power plants, thus it is important to understand the performance shaping factors to improve the safety of socio-technical systems. Among various factors affecting the performance of an operating team, its cultural characteristics is known as one of the dominant factors. To distinguish the cultural characteristics of each team systematically, it is important to confirm the existence of a domain-specific group culture which can be regarded as a reference to determine the nature of the culture processed by each team. In this regard, this study proposes how to identify a domain-specific culture in a certain domain and confirms its presence in nuclear industry. Four representative classes of cultural factors affecting the formation of group cultures are proposed and eight experimental sets are designed to capture the existence of the domain-specific group culture in nuclear power plants. Empirical cultural data based on Hofstede’s indices is collected from different operator groups with diverse conditions according to the experimental design and analysed statistically. The results show that diverse operator groups share very similar cultural characteristics in terms of two kinds of Hofstede’s indices and it is revealed that the transition of working environment from analogue to digital is the most influential factor on group culture in nuclear power plants.

Keywords: Socio-technical system, Nuclear power plant, Performance shaping factor, Group culture, Cultural factor, Hofstede’s indices.
Design and Homologation of Fiberglass Insulators for High Voltage Switches: An Overview of Italian Regulation and a Proposal for a New Approach to Determine Safety Coefficients

Pichini Maini E.1,a, Mazzarelli I.1,3, Meleddu A.2,c and Ferino J.2
1 INAIL - Istituto Nazionale Assicurazione Infortuni sul Lavoro, Pia Pastore 6, Roma, Italy. E-mail: a.e.pichini@inail.it, i.mazzarelli@inail.it
2 Astarte Strategies Srl – via San Saturnino 7, Cagliari, Italy. E-mail: a.meleddu@astarte-strategies.com, j.ferino@astarte-strategies.com

The joint probability density function (PDF) of response of structural systems subjected to Gaussian white noise is governed by the Fokker-Planck-Kolmogorov (FPK) equation. However, due to the nonlinearity and high-dimensionality of the real engineering structures, it is practically difficult to solve the FPK equation directly. To this end, by introducing the equivalent drift coefficient, Chen & Rui proposed the so called ensemble-evolving-based generalized density evolution equation (EV-GDEE), which can reduce the original high-dimensional FPK equation to a partial differential equation in only one or two dimensions[1]. In the EV-GDEE, the equivalent drift coefficient that represents the driving force the changing of PDF, is obviously essential but usually not previously known. Till now, the equivalent drift coefficient of an arbitrary multi-dimensional and nonlinear system is mainly estimated in numerical ways, e.g., by the regression methods, and generally it is hard to seek a universal and satisfactory result[1,2].

However, for some special multi-dimensional and nonlinear Hamiltonian systems, the analytical solutions to the steady FPK equation is available[3,4], which allows the analytical expression of the equivalent drift coefficient. In this study, the analytical equivalent drift coefficient of steady state is derived based on the exact PDF solutions for several multidimensional and nonlinear systems under Gaussian white noise excitation. The derived analytical expression is also compared with the numerical regression method. In addition, the obtained analytical expression is used to promote the estimate of transient equivalent drift coefficient, and consequently, yield results of higher accuracy.

Keywords: EV-GDEE, Equivalent drift coefficient, Analytical expression, Hamiltonian systems, Steady state.
Estimation of Sampled Domain Probability using Convex Hull Approximation

Gerasimov Aleksei⁶ and Miroslav Vorechovsky⁷
Institute of Structural Mechanics, Brno University of Technology,
Veveri 331/95, Brno, Czech Republic.
E-mail: a.aleksei.gerasimov@vutbr.cz, b.vorechovsky.m@vut.cz

In various sampling methods developed for estimation of failure probability, there are stages at which it is useful to estimate the extent of the domain of basic variables which has already been covered by sampling points. This information is helpful for adaptive update of the sampling strategy. We propose using a geometrical representation of the explored part of the domain by a convex hull. Once performed, we may target at exploration sampling, as well as using convex hull for estimation measure of the (un)explored domain. Whereas in problems which feature just a few random variables we are able to set up convex hull bounding the given set of points precisely, in problems of high dimensions we only can assemble convex hull from a limited number of hyperplanes bounding a set of points. This paper compares various approximation to convex hull in small to moderate domain dimensions.

Keywords: Structural reliability, Spatial approach, Convex hull approximation, Failure probability, Monte carlo, Exploration sampling.

Finite Element-Fidelity Parametrization of Kriging Metamodels for Structural Reliability Assessment

Ludovic Mell⁶, Valentine Rey and Franck Schoefs
GeM, Research Institute in Civil and Mechanical engineering,
University of Nantes, France.
E-mail: ludovic.mell@univ-nantes.fr

It is critical to obtain a precise estimation of the probability of failure when doing the reliability analysis of a given structure. The Monte-carlo estimator is a non-intrusive and unbiased estimator than can be easily implemented to compute this probability. However, the Monte Carlo estimator requires to simulate the structure for a large number of realizations of input random variables due to its low convergence rate. For complex mechanical problems solved by the finite element method (FEM), the computational cost of this estimator may thus be important. Therefore, some reliability analysis are based on a metamodel built from a few calls to the finite element solver that allows to quickly approximate the structural response. To accurately estimate the probability of failure, the metamodel has to be precise close to the limit state delimitating the safe and failure zones. One of the common methods to construct a metamodel is kriging. This estimation of uncertainty allows to couple the metamodel with the Monte-Carlo estimator, which enables to define an adaptive strategy to improve the quality of the metamodel near the limit state. The discretization of the mechanical problem leads to an error in the structural response and thus in the estimation of the probability of failure. To control that error, multifidelity kriging was introduced in 2020. However, it requires the use of an expensive a posteriori discretization error estimate that is not available for every mechanical problem. This work exploits a priori knowledge of the FEM convergence rate to build a mesh size parameterized kriging metamodel. This meta-model allows to compute the probability of failure for any mesh size through Monte-Carlo sampling and thus check for mesh convergence.

Keywords: Multi-fidelity, Kriging, Probability of failure, Mesh convergence.
Development of Containment Failure Probability and Uncertainty Analysis Program, COFUN-M
Byeongmun Ahn, Dohyun Lim, Youngho Jin and Moosung Jae
Department of Nuclear Engineering, Hanyang University, Korea.
E-mail: a dinsslug@hanyang.ac.kr, b dh3214@hanyang.ac.kr, c yjin1225@hanyang.ac.kr, d jae@hanyang.ac.kr

The feature of the COFUN-M is quantification of the containment state by point estimate value, importance analysis, sensitivity analysis and uncertainty analysis for internal and seismic event. The uncertainty analysis process of the level 2 PSA is that a level 1 PSA uncertainty propagate to a level 2 PSA uncertainty. In order to perform uncertainty analysis in the COFUN-M code, we need to prepare the input. The basic event probability data including probability distribution were needed and would be used for the level 1 PSA uncertainty analysis. To perform uncertainty analysis in a level 2 PSA, it is necessary to define the split fractional branch point and define the probability distribution and priority. Once the input is ready, uncertainty analysis is performed via Monte Carlo sampling. Finally, the uncertainty analysis is performed for the end point of the PDS, CET, STC and LERF. One of the outstanding characteristics of the COFUN-M is to perform level 2 PSA for multi-unit accident. The one of format of multi-unit level 2 PSA is combination of STCs but the combinations could be too many to acquire insight itself. The COFUN-M provides user-defined combination which makes STC combinations classified.

Keywords: Level 2 probabilistic safety assessment code, Level 2 probabilistic safety assessment uncertainty analysis, Level 2 multi-unit probabilistic safety assessment uncertainty analysis, Uncertainty propagation, Containment performance analysis, Nuclear safety.

Development of the Deep Learning Based Fast Simulation for Reducing the Uncertainty in Probabilistic Safety Assessment
Hyeonmin Kim1, Seunghyoung Ryu2 and Jinkyun Park3
1 Risk Assessment and Management Research Team, Korea Atomic Energy Research Institute, 111, Daejeon-daero 989 beon-gil, Daejeon, South Korea.
E-mail: 2 hyeonmin@kaeri.re.kr, 3 ashryu@kaeri.re.kr
2 Applied Artificial Intelligence Lab, Korea Atomic Energy Research Institute, 111, Daejeon-daero 989 beon-gil, Daejeon, South Korea.
E-mail: kshpjk@kaeri.re.kr

A Probabilistic Safety Assessment (PSA) has been used to estimate the risk of Nuclear Power Plants (NPPs). For more accurate analysis, the PSA analysis should be performed, as realistic as possible. The problem is that, however, the number of accident scenarios will drastically increase for a complicated system that comprises of many systems or components, such as NPPs. Indeed, this problem was the main obstacle hampering the introduction of reduction of uncertainty in PSA.

To handle this problem, as previous study, DeBATE (Deep-learning Based Accident Trend Estimation) was suggested and developed [1]. DeBATE can provide the whole trend of key process parameters calculated from any physical model after training the associated input to it. The schematic diagram of DeBATE is shown in the figure 1. In order to confirm the feasibility of DeBATE, total 80,000 accident scenarios of Steam Generator Tube Rupture (SGTR) and Main Steam Line Break (MSLB) reflecting of standard post trip action was prepared by MARSKR. As a result, the output was generated less than in 0.2s with about 5% error in average.

Keywords: Dynamic PSA, Deep learning, Fast simulation, Surrogate model.

A New Generation of RAM Models to Incorporate Obsolescence Management Issues
Isabel Martín1, Sebastián Martorell2, Ana Sánchez2 and Sofia Carlost
Department of Chemical and Nuclear Engineering, MEDASEGI research group, Universitat Politècnica de València, Valencia, Spain.
E-mail: 1 ismarll@upv.es, 2martorell@upv.es, 3anasanchez@upv.es, 4scarlost@upv.es

This paper is focused on a study of the capability of the actual RAM models to propose recommendations and obtain a new generation of advanced models to characterize reliability, maintainability, and availability (RAM) behavior of critical components. In those new models, the effects of
aging and obsolescence, their causes and principal failure modes and surveillance and maintenance policies will be explicitly considered. These models can be used in the context of plant life extension, as aging and obsolescence management of the critical safety equipment are two key factors to guarantee a long term safe and sustainable operation of nuclear power plants.

Keywords: RAM, Aging, Obsolescence, Maintenance, PSA, Nuclear power plants.

Application of Layerwise Relevance Propagation for Explaining AI Models in Nuclear Field
Seung Geun Kim1 and Jaehyun Cho2
1Applied Artificial Intelligence Laboratory, Korea Atomic Energy Research Institute, Daejeon-daero 989beon-gil, Yuseong-gu, Daejeon, South Korea.
E-mail: sgkim92@kaeri.re.kr
2Risk Assessment and Management Research Team, Korea Atomic Energy Research Institute, Daejeon-daero 989beon-gil, Yuseong-gu, Daejeon, South Korea.
E-mail: chojh@kaeri.re.kr

Recently, neural network is widely applied in various fields due to its superior performance. Accordingly, many researches on applying neural network to nuclear field have been conducted for enhancing safety of nuclear power plant (NPP). However, due to the black-box nature of neural network and the NPP’s safety-critical characteristic, such researches share common limitations on the perspectives of reliability and practicality.

To deal with the explainability problem of neural network, numerous explainable artificial intelligence (XAI) methods have been proposed. Most of existing XAI methods can be classified into two categories. The first category is the XAI methods that provide model-wise explanations. These methods deduce the explanations on model itself, through extracting features within hidden layers or directly accessing to the model parameters. In contrast, the second category is the XAI methods that provide input-wise explanations. These methods deduce the explanations about specific input, through conducting sensitive analysis or relevance backpropagation. To make neural network models that are sufficiently reliable and practical for nuclear field, each category of XAI method should be thoroughly considered. However, only few studies are dealt with adopting XAI methods to nuclear field.

In this study, layer-wise relevance propagation (LRP) which is one of the representative XAI method was adopted. LRP explains the neural network model’s output by deducing the relevance between each part of the input and corresponding output, and has shown better performance in most cases compared to other XAI methods. The authors applied LRP to two neural network applications on nuclear field, that are fast running and scenario classification. For the experiments, simulation was conducted and acquired data was used for model training. Results revealed that the application of LRP could provide explanations on model’s output which can be used to enhance the reliability and practicality of neural network models in nuclear field.

Keywords: Nuclear field, Nuclear power plant, Neural network, Black-box, Explainable artificial intelligence, Layer-wise relevance propagation.
Reliability Prediction of Electronic Devices for Combat Vehicles Based on Accelerated Testing

Xuan Phong1 Cu and Zdenek Vintr2

1Faculty of Vehicle and Energy Engineering, Le Quy Don Technical University, Hanoi, Vietnam.
E-mail: xphong.2010@hanoi.edu.vn

2Faculty of Military Technology, University of Defence, Brno, Czech Republic.
E-mail: zdenek.vintr@unob.cz

The wide application of highly sophisticated electronic components in combat vehicles is a key trend in recent time. Transmission systems (including engines and automatic transmissions), weapons, security, reconnaissance, and communication systems based on digital technology and have been implemented in combat vehicles. Due to the increasing number of electronic devices in combat vehicles, it can be said that this is the process of digitizing military technology. Electronic devices experience vibration stress while combat vehicle operates in a ground space. Vibration may cause structural collapse, mechanical failure, fracture, cracking, physical breakdown of the seal, complete disconnection, or interruption of electronic parts. In order to ensure the reliability of electronic devices during operation, it is necessary to conduct vibration tests for a functionally test under severe vibration environments. The presented study has applied accelerated reliability testing methods for predicting the reliability of electronic devices built in combat vehicles. A special test system has been designed to practically realize pertinent accelerated tests. The system consists of a platform base for placing electronic devices, hydraulic equipment to vibrate the base, hydraulic control system and instrumentation of system performance. The paper presents methodology of the realized accelerated tests and demonstrates procedure of tests results evaluation. Selected results of electronic devices reliability prediction based on test data are also presented.

Keywords: Vibration, Accelerated testing, Electronic device, Reliability, Combat vehicle.

Accelerated Reliability Testing of Combat Vehicles Electronic Parts Based on Multifactor Stress

Zdenek Vintr2 and Anh Dung Hoang1

1Faculty of Military Technology, University of Defence, Czech Republic.
E-mail: zdenek.vintr@unob.cz, anhdung.hoang@unob.cz

Electronic elements are increasingly used in a variety of applications, including in civilian and military vehicles. Evaluating the lifetime of these elements helps to control the reliability of the devices using them. With the development of manufacturing technology, electronic elements become products with high reliability and long service life. Hence the Accelerated Test is used to evaluate their reliability, reduces the time and cost of testing them. This paper focuses on reliability prediction in the case of electronic parts of combat vehicles using accelerated reliability testing. An extensive experiment has been realized to predict the reliability/life of miscellaneous electronic parts used in the design of a combat vehicle with various stress factors. As an example of the tests realized the paper presents the procedure and results of LEDs accelerated testing based on multifactor stress of the LEDs. Three types of accelerating factors have been applied – high temperature, ON/OFF cycling, and loading current. The paper deals with the methodology of the realized accelerated tests and demonstrates the procedure of test results evaluation. Two methods are used for accelerated tests data evaluation – application of the Wiener process-based model, and classical approach based on international standard IEC 60065-4. The paper compares the results of both approaches and presents selected outputs of the supposed method of the LEDs reliability prediction for various operating conditions.

Keywords: Lifetime, Accelerated reliability testing, LED, Wiener process, Reliability prediction, Combat vehicles, Electronic part.

D-DEG: A Dynamic Cooperation-Based Approach for Reducing Resource Consumption in Autonomous Vehicles

Tobias Kain1,2, Marcel Aguirre Mehlhorn1,3, Hans Tompits2 and Jullian-Steffen Müller1,2

1Volkswagen AG, Germany.
E-mail: tobias.kain@volkswagen.de, marcel.aguirre.mehlhorn@volkswagen.de, jullian-steffen.mueller@volkswagen.de

2Technische Universität Wien, Austria.
E-mail: tompits@tut.nct.at

Operating a vehicle autonomously is a resource-intensive task. Since resources, like computing power, energy, and bandwidth, are limited in such vehicles, methods for reducing resource consumption are required. In this paper, we propose D-DEG, a cooperation-based approach for autonomous vehicles that is capable of reducing resource usage. The basis of our approach is that vehicles that are in close proximity and that use the same sensor and software set perceive and compute similar data. The idea is to share information, e.g., sensor data and application outputs, between vehicles using VANET (Vehicular Ad-Hoc Network) technologies. The transferred information is used to achieve resource preservation, whereby
our approach aims to reduce resource consumption by degrading sensors and applications. To this end, we introduce the so-called dynamic-degradation evaluator. This component analyzes the information received by other vehicles to determine whether sensors and/or applications can be degraded. Besides the data received from other vehicles, the dynamic-degradation evaluator also considers the current operational design domain (ODD) and the system state, which includes, for instance, information about the current resource utilization and the safety level of the vehicle, to determine whether degradation operations can be performed. Those degradation operations can range from decreasing the sampling rate of a sensor or the output rate of applications to shutting down sensors or applications, respectively.

Keywords: Autonomous vehicles, VANET technologies, System architecture, Resource efficiency.

TH1: 547

09:00 hrs

Expert Judgement in Security Analysis – the Pros and Cons of Analytical Wargaming

Stein Malerud and Håvard Fridheim

Norwegian Defence Research Establishment (FFI), PO BOX 25, 2027 Kjeller, Norway.

E-mail: smalerud@ffi.no, hf@ffi.no

The lack of relevant and reliable information is a recurring challenge in analysis and decision-making related to security issues. Security analysis often relies on input from Subject-Matter Experts (SME). SME judgments are subjective, and the personal traits and cognitive and motivational biases of the experts may affect the quality of the information. If not handled properly, this can threaten the validity and credibility of the collected information, the results of the analysis and, in the end, the supported decisions. Hence, we need structured, transparent and reliable methods for capturing knowledge from SMEs.

In this paper, we explore the benefits of using analytical wargames to facilitate information collection from SMEs and stakeholders related to security analysis. The main goal is to obtain valid and credible expert judgements as input to the analysis. “Analytical arguing” is a generic term for various types of games tailored to support data collection and analysis related to conflict and competition.

We argue that analytical wargames are well suited to support information collection in the different phases of the analytical process. Wargames provide settings that not only enable creative thinking, but also bring structure and traceability to the process of extracting information from SMEs. Our findings are partly based on a survey among researchers on their experiences in using wargames to support information collection.

Keywords: Security, Wargames, Analysis, Information collection, Elicitation, Experts, Judgements.

TH1: 550

09:20 hrs

The Traffic Management Intrusion and Compliance System as Security Situation Assessment System at an Air Traffic Controller's Working Position

Meilin Schaper, Olga Gluchshenko, Kathleen Muth, Lukas Tybarry, Milan Rusk and Martijn Tinke

1Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Lüneburger Heide, 7, 38108 Braunschweig, Germany.

E-mail: firstname.name@savba.sk

The need to protect air traffic control against attacks and detect security incidents is widely accepted. Nevertheless, depending on the systems and procedures, it is sometimes difficult to distinguish whether “something is not as it should be”. On the one hand, it could be due to a failure, on the other, it could be because of an intentional interruption/abuse. This paper lists five specific kinds of indications that may be found analyzing the traffic situation and the radio communication at a controller working position and details how they are detected. Those indications are non-conformant movements, conflicts, unusual clearances/behavior, unauthorized speakers and detected stress. Furthermore, a correlation function is described which determines the security situation indicator. This indicator categorizes the security situation into three different states expressing how likely it is that the detected indications may represent a security situation needing attention: “green”, meaning there are no security-related actions needed; “yellow”, meaning something seems strange, be aware; and “red”, meaning that there is most probably a security incident. The Traffic Management Intrusion and Compliance System (TraMICS) is supposed to assist as well the air traffic controllers and the operators in a security operation center by being part of an airport security architecture.

Keywords: ATC security, TraMICS, Correlated security indicator, Security situation indicator, Airport security, Controller working position.
Cyber Threats Affecting the Process Industry and Similar Sectors
Matteo Iaiani, Alessandro Tugnoli and Valerio Cozzani
LISES – Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali, Alma Mater Studiorum – Università di Bologna, Italy. E-mail: a.tugnoli@unibo.it

Cyber threats are becoming a growing concern for industrial facilities characterized by a high degree of automation, especially those that highly rely on Operational Technology (OT) systems such as process facilities. Fixed installations where chemical and petroleum products are manufactured and stored (e.g. Seveso sites in EU) are of primary concern since attackers may exploit their inherent hazardous conditions and trigger events with severe consequences on workers, population, the environment, and the company itself (e.g. major accidents). The study is based on the development of a database of 82 cybersecurity-related incidents (CSIs) and its analysis using Exploratory Data Analysis (EDA). Time-trend (from 1975 to 2020), geographical distribution, distribution among the industrial sectors, impacts of the incidents, and type of attackers (intentional external / intentional internal / accidental) were investigated, evidencing important findings. The attacks resulted to be able to affect not only the company Information Technology (IT) system, which is a threat common to several business sectors, but also to manipulate the control and safety systems (OT). Finally, the analysis of a sub-set of incidents with more details allowed to identify the general phases of a cyber-attack to IT-OT systems of a process facility. The information obtained can be used to support the application of the techniques commonly used to handle security-risks in process facilities, such as Security Vulnerability Assessment (SVA) methodologies.

Keywords: Past incident analysis, Process industry, Cyber threat, Cyber-attack, Major accident, Security vulnerability assessment.

Risk Perception Biases to be Aware of in Terrorism Threat Assessments
Sissel Haugdal Jore
Department of Economics, Safety and Planning, University of Stavanger, Wits Stavanger, Norway. E-mail: sissel.h.jore@uis.no

According to risk perception research, numerous factors influence risk perception, and these factors will also play a role in terrorism threat assessment. However, there have been few attempts to connect risk perception research with the practice of threat assessments. This paper aims to fill this gap by examine factors associated with risk perception that can influence terrorism threat assessments. The aim of this paper is to scrutinize the psychological biases that can influence risk perception and discuss how these biases can affect threat assessments. The conclusion is that terrorism scores high on all fear factors associated with risk, and therefore, when conducting terrorism threat assessment, it is especially important to acknowledge that threat assessment is a subjective matter prone to individual biases. Similarly, biases at the societal and cultural levels must also be taken into account. It is hoped that increased awareness of how risk perception influences threat assessments can help us build a strong foundation for improved critical evaluation and better decision-making about terrorist threats.

Keywords: Terrorism, Risk perception, Threat assessment, Bias, Heuristics.

Study of the Resilience of Nuclear Power Plants in Response to Climate Change
Rundong Yan and Sarah Dunnett
Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK. E-mail: r.yan@lboro.ac.uk, s.j.dunnett@lboro.ac.uk

In recent years, it has become even more challenging to ensure the safety of nuclear power plants due to accelerated climate change. This is because some existing safety systems in the plants are not able to cope with new issues introduced or aggravated by climate change. In response to this need, this paper will analyze the present related reactor safety systems and propose and discuss a measure that can potentially improve the resilience of the reactor system to climate change. To facilitate the research, the intake structure blockage caused by the outbreak of a kind of marine organism whose size varies from 4mm to 40mm, is chosen as a case study. The study will consider the ability of the system to anticipate for the events, absorb the impact of the events to the system, and recover from perturbations. To facilitate the research, a mathematical model will be developed using Petri nets to simulate the reliability and health states of the related safety systems, the occurrence of disruptive events, the corresponding responses of the nuclear system, and the possible operation states and recovery of the system from the disruptive events. The results indicated that the intake structure blockage caused by such external events cannot
Towards a Novel Tiered Approach to Assess the Resilience Level in the Safety Domain

Elena Stefan1, Carolina Strazzari2, Filippo Marciano2 and Claudio Carnevale4

Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25123, Brescia, Italy. E-mail: eleena.stefani@unibs.it, carolina.strazzari@unibs.it, filippo.marciano@unibs.it, claudio.carnevale@unibs.it

Resilience is the system ability to adjust its functioning prior to, during, or following changes and perturbations. Resilience Engineering represents a new paradigm to improve safety, focusing on how to create resilience in systems. The resilience measurement supports decision making processes, but it is not a trivial task. Therefore, the objectives of this paper are: (1) to critically analyze the literature about quantitative resilience assessments in the industrial safety domain, and (2) to propose a novel three-tier approach for measuring and assessing the resilience potential in any organization in the same domain. To achieve our objectives, we performed a narrative literature review about quantitative resilience assessments in the industrial safety domain, and (2) to propose a novel three-tier approach. We propose an approach able to quantitatively assess the resilience potential in the industrial safety domain that consists of three tiers. A knowledge-driven tier assesses resilience by using the knowledge of decision makers through techniques involving judgements, a knowledge and data-driven tier incorporates methods considering both expert knowledge under uncertainty and objective data, while a data-driven tier includes models performing resilience assessments entirely based on data provided by devices and information systems in the organization.

Keywords: Safety-II, Resilience quantification, Process safety, Occupational safety, Human factor, Safety management, Anticipation, Risk management, Dynamic assessment, Analytic Hierarchy process, Data envelopment analysis, Machine learning.
Framing Cyber Resilience for Critical Infrastructure – A Literature Study

Solveig Pettersen¹ and Tor Olav Grotan²

¹Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology, NTNU, 7491 Trondheim, Norway.
E-mail: solveig.w.pettersen@ntnu.no
²SINTEF Digital, 7034 Trondheim, Norway.
E-mail: Tor_O.Grotan@sintef.no

The paper explores the common grounds of cyber resilience and resilience engineering and reports on a literature study of the term cyber resilience for the application of critical infrastructures. The term cyber resilience has during the last few years gained increasing usage. In the safety field of research, resilience engineering has facilitated alternative approaches to safety management, to cope with complexity. Along with its digitalization, critical infrastructures are getting increasingly more complex, by the introduction of information technology (IT) in already existing operational technologies (OT), and at the same time exposed to new threats, by the connection to internet. The paper investigates to what extent cyber resilience, as it is defined and used today in scientific literature for critical infrastructures, represent a symbiosis of the concepts of cybersecurity and resilience engineering, and possibly a redefinition of cybersecurity practices, similar to how key ideas from resilience engineering have sparked a new paradigm for safety management – “Safety-II.” The scope and applications of cyber resilience for critical infrastructures is examined based on a model describing the various levels of operationalization of cyber resilience. The paper also explores whether current interpretations of cyber resilience, alternatively, is a relabeling of existing cybersecurity practices, and rather represent a form of “rebond or “cyber robustness” that is more loosely connected to security (best) practices, and rather represent a form of “rebond or “cyber robustness” that is more loosely connected to resilience engineering concepts. The paper concludes with the implications for further research within the field of cyber resilience for critical infrastructure applications.

Keywords: Cyber resilience, Resilience engineering, Cybersecurity, Robustness, Information security, Cyber-physical system, Critical infrastructure.

Tae Hwan Lee¹, Gunleiv Skofteland² and Mary Ann Lundteigen¹,³

¹Department of Engineering Cybernetics, Norwegian University of Science and Technology (NTNU), Norway.
E-mail: taehwan.lee@ntnu.no, mary.a.lundteigen@ntnu.no
²Process Technology Upstream Automation, Equinor ASA, Norway.
E-mail: gusk@equinor.com
³Department of Mechanical and Industrial Engineering, NTNU, Norway.
E-mail: gunleiv@ntnu.no

Performance management of safety instrumented systems (SIS) is a vital part of major accident risk management for oil and gas processing facilities. The requirements to performance management are provided in national regulations and governing standards for SIS, such as IEC 61508 and IEC 61511, and cover how the performance shall be managed. Many of the tasks related to performance management of SIS are resource demanding, manually carried out, and dependent on local presence of humans at the facilities. For some of the future offshore oil and gas facilities that are to be completely unmanned, with restricted access to humans, it is necessary to move to a higher level of automation and autonomy in performance management. This includes the utilization of artificial intelligence (AI), such as machine learning (ML), to determine the ability of the SIS to respond to demands under various operating conditions, based on historical or real-time process data and event data from multiple monitoring systems. The proposed decision support system for SIS (SIS advisor) shall provide valuable information on a given process system whether the system is under normal status according to its design intention. With this information, the operators will have a better chance to understand the current operating situation so that they will be able to make better decisions as a response. This paper proposes how ML can be used to enhance operator’s awareness on the system, and set up a framework for processing input data into the information to support operator’s decision. Moreover, it is discussed how to measure the risk reduction made by SIS advisor.

Keywords: Safety instrumented system, Unmanned facility, Machine learning, SIS performance measure.
A New Pivot-Based Approach to Constructing Prediction Limits and Shortest-Length or Equal Tails Confidence Intervals for Future Outcomes under Parametric Uncertainty

Nicholas A. Nechval1,*, Gundars Berzins2 and Konstantin N. Nechval2

1BVEF Research Institute, University of Latvia, Latvia. E-mail: *nechval@telenet.lv, gundars.berzins@lu.lv
2Aviation Department, Transport and Telecommunication Institute, Latvia. E-mail: konstan@tsi.lv

It is often desirable to have statistical prediction limits available for future outcomes from the distributions used to describe time-to-failure data in reliability problems. For example, one might wish to know if at least a certain proportion, say γ, of a manufactured product will operate at least t hours. This question cannot usually be answered exactly, but it may be possible to determine a lower prediction limit $L(X)$ based on a random sample X, such that one can say with a certain confidence $1 - \alpha$ that at least 100% of the product will operate longer than $L(X)$. Then reliability statements can be made based on $L(X)$, or, decisions can be reached by comparing $L(X)$ to t. Predictions limits of the type mentioned above are considered in this paper. A new approach is used to construct unbiased prediction limits and shortest-length or equal tails confidence intervals for future outcomes under parametric uncertainty of the underlying distributions through pivot-based estimates of these distributions. The approach isolates and eliminates unknown parameters of the reliability problem and uses the past statistical data as efficiently as possible. Unlike the Bayesian approach, the proposed approach is independent of the choice of priors and represents a novelty in the theory of statistical decisions. It allows one to eliminate unknown parameters from the problem and to find the efficient statistical decision rules, which often have smaller risk than any of the well-known decision rules. To illustrate the proposed approach, some practical applications are given.

Keywords: Underlying model, Parametric uncertainty, Isolation and elimination of unknown parameters, Efficient statistical decisions.

A Web Application To Predict State Of Charge Of Electric Vehicles Batteries

M. C. M. Dos Santos*, I. D. Lins1 and M. C. Moura2

Department of Production Engineering, Universidade Federal de Pernambuco, Recife, Brazil and CEEAMA – Center for Risk Analysis, Reliability Engineering and Environmental Modeling, Universidade Federal de Pernambuco, Recife, Brazil. E-mail: *monalisa.moura@ufpe.br, 1isis.lins@ceerma.org, 2marcio@ceerma.org

With the increasing concern about environmental issues such as air/water pollution and global warming, searching for new alternatives to provide sustainable transportation devices is highly important to diversify the power source matrix as well as maintain logistic systems as they are today. Therefore, electric vehicles come as a feasible alternative to diversify the current vehicular system to decrease fossil fuels’ impacts. Such devices are composed of certain components being the main one the battery, which is the core of electric vehicles, and its safety is crucial to avoid accidents (e.g. gas leakage, fires, and explosions). Lithium-ion cells are widely used as electric vehicle power sources; and considering Prognostic and Health Management context, information about the State of Charge is essential to ensure the system’s safety. In this context, we develop a Web Application using Streamlit, an opensource Python library, to predict the State of Charge. As an input, the users can enter the monitoring data (e.g. temperature, current, voltage) from their system. In this web application, the user can set the model’s parameters and as the obtained results, this web application is going to give the State of Charge prediction.

Keywords: Electric vehicles, State of charge, Batteries, Machine learning, Web application, Streamlit.
A Decision Support System for Multidimensional Risk Evaluation of Natural Gas Pipelines

Francisco Filipe Cunha Lima Viana¹,², Rodrigo José Pires Ferreira¹,² and Adiel Teixeira De Almeida²

²Petropolis Catholic University, Petropolis, Brazil.

E-mail: affilipelima@gmail.com, marcelohazin@gmail.com, rodrigo@cdsid.org.br

<table>
<thead>
<tr>
<th>Session</th>
<th>TH2A: 273</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day/Date/Time</td>
<td>Thursday, 23 Sep. 2021 / 10:35–11:35 hrs</td>
</tr>
<tr>
<td>Venue</td>
<td>Plenary Room</td>
</tr>
</tbody>
</table>

The distribution of natural gas has become an operation of great concern because of the hazardous conditions. In these systems, accidents can trigger losses concerning the human, environmental, and financial dimensions. Because of conflicting objectives, multidimensional risk analysis is fundamental to supporting decisions on pipeline operations. However, dealing with a large and dynamic amount of information may be inefficient for managers to plan mitigating actions to avoid losses. Thus, this paper proposes to develop a Decision Support System (DSS) based on using a multidimensional risk decision model to assess risk in natural gas pipeline sections. The DSS is developed in two main modules. The first module, which quantifies and sorts risks, uses Utility Theory and the ELECTRE TRI method to assess the level of risk in the sections of a pipeline. The second module conducts a sensitivity analysis that investigates the uncertainty in input parameters and the modification of output assessment. In general, the DSS contributes to structuring the decision-making process of risk assessment of natural gas distribution by monitoring the organization’s limitations, following environmental regulations, and restricting human interference. Thus, this paper presents a possible way to overcome challenges regarding the planning of imminent risk and formulate uncertainty scenarios to manage risk in natural gas pipelines.

Keywords: Decision support system, Natural gas pipeline, Risk evaluation, Utility theory, ELECTRE TRI, Sensitivity analysis.

Risk Assessment in Magnetic Particle Inspection (MPI) of Critical Ferromagnetic Parts via Bayesian Belief Networks and Analytic Hierarchy Process and the use of Goal Tree to Improve the on quality and Sustainability of Organizations

J. C. Pereira¹,²,³ and F. Almeida²

¹Center for Systems and Control, National Laboratory for Scientific Computing (LNCC), Petropolis, Brazil.
²Petropolis Catholic University, Petropolis, Brazil.
³Flavio.42040103@ucp.br

E-mail: jc.pereira@lncc.br, flavio.42040103@ucp.br

This paper proposes a method for identifying the high-level risks in the Magnetic Particle Inspection (MPI) of ferromagnetic material parts, based on Analytic Hierarchy Process (AHP) and Bayesian Belief Network (BBN). The combination of probability and the impact identified the most significant risks, which needed to be addressed to improve quality management system and ensure organization sustainability. As a methodological approach, the estimated risk probabilities for the risk factors obtained from a case study and a survey with experts were loaded into Bayesian Belief Networks software to assess the probability of occurrence of undesirable events and AHP was utilized to rank the relative importance (effect) of risks. The combination of probabilities and the effects identified the most significant risks. The novelty of the paper is the combination of Bayesian Belief Networks software to assess the probability of occurrence of undesirable events and AHP was utilized to rank the relative importance (effect) of risks. The combination of probabilities and the effects identified the most significant risks. The novelty of the paper is the combination of Bayesian Belief Networks software to assess the probability of occurrence of undesirable events and AHP was utilized to rank the relative importance (effect) of risks. The combination of probabilities and the effects identified the most significant risks. The novelty of the paper is the combination of Bayesian Belief Networks software to assess the probability of occurrence of undesirable events and AHP was utilized to rank the relative importance (effect) of risks. The combination of probabilities and the effects identified the most significant risks.

Keywords: Risk assessment, Bayesian belief network, Analytic hierarchy process, Critical ferromagnetic parts, Magnetic particle, Goal tree, Quality management system, Organizational sustainability.
Agile development (AD) represents a paradigm shift in how organizations manage their development projects and collaborate with internal and external project stakeholders. AD is a development approach based on iterative development, frequent adaptations, and incremental deliveries in which requirements and solutions evolve. AD could thus challenge the common Waterfall approach in risk assessment. The study starts with a literature query to identify challenges in AD using four quadrants of risk categorization (customer mandate, scope & requirements, execution, environment). The paper points to the problem of means-end mismatch, frequent adaptations, and incremental deliveries in AD and Agile software development (ASD). Semi-structured interviews and questionnaires with IT experts from various Swiss Federal Departments complement and substantiate the findings. A checklist based on the SWOT analysis summarizes the findings from damage catalogs and theoretical system analysis were used in combination with experimental investigations. The developed model links the following external influences to have an effect on bearing damage: load conditions, operation-dependent parameters in the bearing, physical and chemical mechanisms as well as appearance of the damage. The presented model can be used to identify the following influences that lead to main failure modes, parameters that reinforce damage mechanisms, cycles that are self-reinforcing, and parameters that contribute to multiple damage mechanisms. The before mentioned facilitates the formulation of relevant influences on load conditions for bearing durability tests.

Keywords: Risk assessment, Risk management, Agile development, IT security.

TH2A: 285 11:15 hrs

Challenges for Continuous Risk Assessment in Agile Development Environments

Ralf Mock\(^1\) and Andreas Fischer\(^2\)

\(^1\)Step Commerce AG, Switzerland. E-mail: r.mock@step-commerce.com

\(^2\)General Secretariat–Federal Department of Home Affairs, Switzerland

Development of a Cause-Effect Relationship Model to Identify Influences on Load Conditions that Cause Bearing Damage

Carolin Sturm\(^1\), Thomas Gwosch\(^2\), Sebastian Zimprich\(^2\) and Sven Matthiesen\(^2\)

Karlsruhe Institute of Technology, Germany. E-mail: 1Sturm.carolin@kit.edu, 2Gwosch@kit.edu, 3Sebastian.Zimprich@kit.edu, 4Sven.Matthiesen@kit.edu

When considering the influencing factors that may cause damage to occur within a bearing, it is important to note that one cannot trace the cause back precisely. These influencing factors may range from being temperature changes, external forces and lubrication choices. The load conditions in technical systems depend on many influences. This paper presents a model that supports the identification of the relevant influences on load conditions that cause bearing damage, to enable bearing durability tests. The development of the presented model is based on consideration of pitting as well as widening of the bearing raceway and edge throw-ups. The influences that the before mentioned considerations have on the load conditions as well on the occurrence of the damage were unknown. Furthermore, findings from damage catalogs and theoretical system analysis were used in combination with experimental investigations. The developed model links the following external influences to have an effect on bearing damage: load conditions, operation-dependent parameters in the bearing, physical and chemical mechanisms as well as appearance of the damage. The presented model can be used to identify the following influences that lead to main load modes, parameters that reinforce damage mechanisms, cycles that are self-reinforcing, and parameters that contribute to multiple damage mechanisms. The before mentioned facilitates the formulation of relevant influences on load conditions for bearing durability tests.

Keywords: Risk assessment, Risk management, Agile development, IT security.

TH2A: 694 10:55 hrs

Reliability Assessment of Pressurized Pipelines Based on Corrosion Rates and Defect Dependencies

Hicham Boufkhed\(^1,\)^\(^2\), Radouane Laggoune\(^1,\)^\(^2\) and Emilio Bastidas Artaud\(^2\)

\(^1\)Unité de Recherche LaMOS, Faculté de Technologie, Université de Bejaia, 06000 Bejaia, Algeria. E-mail: 1boufkhedh@gmail.com, 2laggoune@yahoo.fr

\(^2\)Laboratory of Engineering Sciences for Environment, LIMR CNRS 7356, La Rochelle University, 17042 La Rochelle, France. E-mail: 1bastidas@univ-lr.fr

Underground pressure pipes are subject to corrosion under various environment conditions. Such as the aggressiveness of the soil, which is influenced on the corrosion rates, and depends on one region to another at long of pipeline. This study will focus on evaluating the reliability of a corroded pipeline under pressure. Degradation of this asset is induced by localized corrosion, resulting in the loss of wall thickness. It has a significant effect on the probability of bursting and is influenced by external factors (spatial variability), which brings us back to the study of the distribution of corrosion rates along a pipeline. The failure probability is computed by using Monte Carlo simulation. This work will be applied to case study on an oil pipeline located in Algeria made of API 5L X52 steel.

We will study the effects of correlations between cor-
sion defects parameters on the probability of failure. The sensitivity of the design variables in the performance function on the probability of failure will be also studied.

Keywords: Pipeline, Reliability analysis, Corrosion, Monte-Carlo, Variable correlation, Sensitivity analysis.

Table

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Speaker(s)</th>
<th>Venue</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH2C: 641</td>
<td>Robust End-To-End Reliability Evaluation for Industrial 5G Communication Systems</td>
<td>Mu-Xia Sun(^a) and Yan-Fu Li(^b)</td>
<td>Espace Grand Angle 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Department of Industrial Engineering, Tsinghua University, Beijing, 100084, P. R. China.</td>
<td>E-mail: (^a)muxiasun@mail.tsinghua.edu.cn, (^b)liyanfu@tsinghua.edu.cn</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Robust End-To-End Reliability Evaluation for Industrial 5G Communication Systems</td>
<td>Mu-Xia Sun(^a) and Yan-Fu Li(^b)</td>
<td>Department of Industrial Engineering, Tsinghua University, Beijing, 100084, P. R. China.</td>
<td>10:35 hrs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E-mail: (^a)muxiasun@mail.tsinghua.edu.cn, (^b)liyanfu@tsinghua.edu.cn</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | Dynamic attributed networks (DANs) provide powerful means of representing complex system, e.g., online social networks, financial networks, transactional networks, and wireless sensor networks. To facilitate situation awareness and critical decision-making, anomaly detection in DANs has become an increasingly active area of research in network sciences. However, most existing methods are only capable of detecting the temporal outliers, neglecting the potential benefits of jointly detecting the spatial outliers across the entire network. To address this issue, this paper presents a novel approach, which is also efficient for large-scale networks. Specifi"
Any KPI anomaly is alerted, such that the operators are typically overwhelmed by KPI alerts every day. Moreover, the operators need to invest plenty of resources for maintenance to respond to these alters, which is simply not sustainable. Therefore, there is a strong demand from industry for a system-point-of-view reliability metric that severs as the foundation of scientific management of the maintenance activities of modern telecom network. However, there is still lack of such a metric in academia as well as in practice. In this work, we propose a set of metrics based on the concept of service reliability with the attempt to bridge such a big gap.

Keywords: Telecom network, 5G, System reliability metric, Consumer demand, Service reliability, Operation and management.

Session: [TH2D]—Prognostics and System Health Management
Day/Date/Time: Thursday, 23 Sep. 2021/10:35–11:35 hrs
Venue: Panoramique

TH2D: 652 10:35 hrs

A ROC Based Model to Maximize Global Detection Power of a Group of Detectors

Pierre Beauseroy and Edith Grall-Mais
Téte Systems Modelling and Dependability, M2S, Université de Technologie de Troyes, Troyes, France.
E-mail:

In many applications, detection methods are implemented to monitor systems. In a complex system many components may be monitored and each component detector must be tuned based on a tradeoff between false alarm and non-detection. The tuning of these detectors is an open question. A naive approach is to tune each detector individually.

In previous communications we have shown that this naive approach leads to non-optimal global performance and can be significantly improved using an adequate setting and optimization method to tune jointly the detectors. The information needed to perform such optimization is the ROC curve of all individual detectors and the expected global performance as a final result.

In these first communications we assumed that the system under consideration is made of parallel units and that the failure probability of a produced good is independent of the units of the system that builds it. But to create a complete model, in many real systems, one needs also to consider the case of series components.

In this communication we consider series components and the goal is to tune detectors to satisfy a chosen performance constraint. For sake of simplicity the Neyman-Pearson setting is considered here. Two different situations are studied. In the first case detectors test different types of failure and are assumed independent of each other. In the second case all detectors are testing the same type of failure. A connection between that case and decision tree is drawn. In both case the model is introduced and illustration of the effect of detector tuning is shown. These results could be used to gain significant benefits in two cases: first, to improve the detection performance of an existing system whether the constraints are invariant or changing with time, second, when designing a new system to make a choice between different detection sensors and technologies that have their own cost and offer different performance profiles.

The proposed approach is a step forward to enable comparison between different design options.

Keywords: Detection, ROC curves, Statistical models, Compound system, Global performance, Performance assessment.

TH2D: 663 10:55 hrs

Forecasting Components Failures Using Ant Colony Optimization for Predictive Maintenance

Reza Khoshkangini1,2, Ankit Gupta1,2, Durlabh Shah1,2, Mohsen Taigardan1 and Abbas Orand1,3
1Center for Applied Intelligent Systems Research (CAISR) Helwiaed University, Sweden.
E-mail:

Failures are the eminent aspect of any sophisticated machine such as vehicles. Early detection of faults and prioritized maintenance is a necessity of vehicle manufacturers as it enables them to reduce maintenance costs, safety risks and increase customer satisfaction. In this study, we propose to use a type of Ant Colony Optimization (ACO) algorithm to diagnose vehicles faults. We show experimental evaluations on the real data captured from heavy-duty trucks illustrating how optimization algorithms can be used as a classification approach to forecast component failures in the context of predictive maintenance.

Keywords: Ant colony optimization, Fault detection, Predictive maintenance.
The ability to accurately predict the remaining useful life (RUL) of rolling bearings plays an important role in the condition monitoring and maintenance of rotating machinery. Some practical challenges are related to the selection of optimal degradation features for effective and accurate RUL prediction. There are few works dedicated to the problem of selecting suitable features for RUL prediction based on physical modeling. This paper proposes a study for predicting RUL of rolling bearings considering various features and prediction methods based on physical fault crack growth modeling. Three feature sets (RMS, level crossing, multiple features (MFs)) are considered as degradation indicators. A nonlinear least squares method is used for initial parameters estimation. Bayesian method and particle filtering are applied for updating the values of the parameters of the physical model. The proposed framework is demonstrated using real test data provided by the FEMTO-ST institute. The results of two methods are compared, considering three different indicators. MFs indicator has the least error in the RUL estimation compared to other indicators. Particle filtering is found to perform more accurately than the Bayesian method when data are collected in real time.

Keywords: Remaining useful life, Rolling bearing, Vibration, Bayesian approach, Particle filter, Feature extraction.
Keywords: Safety culture, Pedagogical tool, Human reliability, Bayesian network and fuzzy logic.

TH2E: 469 10:55 hrs

Sources of Underreporting of Adverse Events in the Chain from Individual to Regulator: A Short Literature Review
T rand Kongsvik1, Stian Antonsen2 and Øyvind Dahl3
1Department of Industrial Economics and Technological Management, Norwegian University of Science and Technology, Norway.
E-mail: trond.kongsvik@ntnu.no
2NTNU Social Research, Norway.
E-mail: stian.antonsen@samforsk.no
3Proactima, Norway.
E-mail: oyvind.dahl@proactima.no

Reporting of adverse events is an important part of safety management and a possible source for learning and continuous improvement. However, underreporting of such events remains an issue in working life. This short literature review is aimed to provide an overview of the current state of knowledge regarding the level and causes of underreporting, as well as the measures that are proposed in the literature to increase reporting. Reporting related to individuals, contractors, and authorities is considered. Identified causes for underreporting included lack of feedback, fear of reprisals, fear of negative attention, elements of the professional identity, lack of knowledge, high efficiency demands, safety culture and safety climate, company size, and system flaws involving practical problems with the reporting system. Proposed measures included simpler reporting systems that ensure confidentiality and system requirements for feedback, education, and training, and a general strengthening of safety management systems. Research on underreporting related to contractors and authorities is scarce and needs to be taken up by future researchers since new work arrangements are on the rise.

Keywords: Adverse events, Reporting, Underreporting, Contractors, Operators, Regulators.

TH2E: 585 11:15 hrs

Safety Knowledge in the General Population in the School Age
Gabriele Baldissone1,a, Micaela Demichela1,2, Salvina Murì2,3, Eleonora Pilone1,4, Lorenzo Comberti1,4 and Maria Alejandra Restrepo Mejía2
1DISAT, Politecnico di Torino, Torino, Italy.
E-mail: gabriele.baldissone@polito.it, micaela.demichela@polito.it, elenno.pilone@polito.it, lorenzocomberti@polito.it
2Aria srl, Torino, Italy.
E-mail: salvina.mure@aria.srl, alejandra.restrepo@aria.srl

Within the major risk reduction measures, the basic knowledge and awareness of safety issues in various environments must be highlighted for their importance. The knowledge of the main concepts of safety means that a good safety culture. As this knowledge grows, operators will be more willing to adopt the prescribed prevention and protection measures in the work environment. In addition, good knowledge can push operators to actively participate in data collection campaigns and proactive security measures. In fact, the safety regulations of various countries prescribe training and information campaigns for the safety in the workplace. To be effective, these training and information measures require the operators to have a basic safety culture and knowledge.

Poor data on the level of basic knowledge possessed by the general population are available. The culture and basic knowledge about safety are acquired during the development phase of the individual. To evaluate at which level this knowledge is acquired, a data collection on the safety knowledge of children in primary and secondary schools was carried out. About 1600 students (around 800 in primary schools and 800 in secondary schools) from 5 different schools, aged between 7 and 15, were involved in the data collection. The schools where the data collection was carried out are in the city of Turin, Italy.

Data collection was carried out through a game-based approach, requiring the answer to a short series of multiple-choice questions. The questions changed according to the age of the participants. Based on the results obtained from the data collection, in this article it is shown how the knowledge about safety varies with the age, gender and location of the school (consequently with the socio-economic environment of the neighbourhood in which the school is located).

Keywords: Basic safety knowledge, Data collection and analysis, School age.
Safeguarding the Long-Term Condition of Logistics Infrastructure Assets: An Analysis of Concession Contracts

Mónica López-Campos, Laura Tapia, Carlos Castro, and Raúl Stegmaier

Industrial Engineering Department, Universidad Técnica Federico Santa María, Chile.
E-mail: monica.lopezc@usm.cl, laura.tapia@sansano.usm.cl, carlos.castro.14@sansano.usm.cl, raúl.stegmaier@usm.cl

The logistics of a country is essential to the subsistence and development of its population. In a global market, the challenge is to move goods quickly, reliably, and economically. Maintenance is a major player in the operational performance of a country’s infrastructure. The functionality, safety, productivity, comfort, image, and conservation throughout the entire life cycle of ports, airports, roads, and railway connectivity depend on the maintenance function. In particular, this kind of maintenance is generally carried out via concession contracts or operating subsidiaries. After conducting an exploratory analysis, the authors identified the main trends, methodologies, research opportunities, risks, as well as recommendations to reduce hazards in contracts. We found that the number of publications about concession models and infrastructure contracts has been increasing, nevertheless most of the works correspond to BOT-type (building-operate-transfer) contracts, mainly focused on roads. Therefore, there is a need to increase in research regarding contracts that also involve maintenance of ports, airports, and other infrastructure. Particularly since we confirmed the evidence that PPPs (public-private partnerships) contracts offer great advantages for contractors to provide high quality infrastructure. Also, we identify four elements that are the most cited as key factors for an adequate concession contract: 1) Taking care of financial viability, 2) Procuring collaborative work, 3) Shielding against political instability, and 4) Being careful in the estimation of the contract concession period.

Keywords: Maintenance, Logistics, Infrastructure, Contracts, Concession, Best-practices, Systematic review.

How Corona Crisis Affects Critical Flows – A Swedish Perspective

Josefin Lindström and Jonas Johansson
Division of Risk Management and Societal Safety, Lund University, Sweden.
E-mail: josefin.lindstrom@risk.lth.se, jonas.johansson@risk.lth.se.

The functioning of modern societies is highly dependent on flows, relying on timely deliveries of goods and services. Critical flows are those particularly important, e.g., electricity, food, and pharmaceuticals. Infrastructures upholding flows often transgress national borders, where a disruption can escalate into wide-spread crises. Continuity of critical flows is hence of utmost importance under stresses. A worldwide ongoing stress is the coronavirus pandemic, strongly characterizing 2020 and dominating media, resulting in closed borders, lock-downs, halted production, and altered demand patterns. The corona crisis is foremost a health crisis, with devastating consequences on people’s life and health. Many studies have focused on the healthcare sector, with limited attention on critical flows in other sectors. This study aims to explore effects on critical flows within four societal sectors (transport, energy, info-com and food) in Sweden to date. A scoping study of Swedish printed press throughout 2020 was performed, investigating actual and potential flow impacts, flow interdependencies, and implications for preparedness and resilience. The media database Retriever Research was used to identify 4693 news and opinion articles, of which 145 relevant articles were subjected to content analysis. Concluding that limited critical flow disruptions occurred despite many prophecies and predictions. The disruptions that occurred were short-lived, non-severe, and mostly originating from secondary effects, indicating that Swedish critical flows in these sectors are resilient to this type of pandemics.

Good Practices for Critical Infrastructure Resilience: a classification and assessment framework

Giada Feletti, Mariachiara Piraina, Boris Petrenj and Paolo Trucco

Department of Management, Economics and Industrial Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
E-mail: a giada.feletti@polimi.it, b mariachiara.piraina@polimi.it, c boris.petrenj@polimi.it, d paolo.trucco@polimi.it

The fast-growing occurrence of unexpected events affecting Critical Infrastructure (CI) systems in recent years fostered a shift from a protection-focused approach to CI Resilience (CIR). In this context, the increasing number of interdependencies, which generate domino effects and cascading failures, led to the call for establishing collaborative approaches and partnerships at the regional, national or international level. To support and implement CIR strategies, governments and CI operators often rely on Good Practices (GPs), generally defined as methods or techniques that are applied to solve existing problems producing effective results and bringing benefits to the users. Despite the high number of GPs, they are often insufficient to cover the wide spectrum of capabilities required for effective Emergency Management (EM). In this study, the systematic analysis and review of scientific literature and European projects in the CIR domain, led to the identification of 53 GPs that have proven to be effective in managing CIR. To enable comparison among the GPs the study proceeds with the development of a framework for classifying and assessing GPs according to their application context, the activities and functionalities covered, and the EM capabilities they are able to support. From a research perspective, the framework offers a robust background for future assessment and benchmarking of CIR related GPs; it is also useful for practitioners to assess and select the most suitable GPs under different institutional and operational contexts.

Keywords: Critical infrastructure, Resilience, Good practice, Emergency management capability, Collaborative approaches, Interdependence.

Optimizing Condition Monitoring Retrofitting Decisions for Interdependent Multi-Unit Systems Under Dynamic Uncertainty

Luis Dias¹, Armando Leitão² and Luis Guimarães²,³

¹Department of Industrial Engineering, INESC TEC, Portugal. E-mail: luis.m.dias@inesctec.pt
²Department of Industrial Engineering, FEUP, Portugal. E-mail: a afleitao@fe.up.pt, b lguimaraes@fe.up.pt

In many industries, the employed maintenance policies contributed to the concentration of asset replacements in a short period of time. Thus, the number of O&M activities increases, leading to rising operational costs that are not compatible with the available resources. Moreover, these assets encompass multiple failure modes, which reduce asset availability and influence its longevity. Because asset degradation is stochastic, a considerable amount of uncertainty is associated with this problem. The recent technological advances in monitoring technology may foster a reduction in degradation uncertainty but the extra effort regarding the investment plan must be carefully planned. Bearing this in mind, we propose a methodology to determine the investments in the installation of monitoring equipment accounting for the impact in maintenance budget for O&M activities for a resource-dependent asset portfolio with multiple failure modes. The budget is shared between multiple assets and must be determined, a priori, and managed throughout an established time horizon. Since investing in monitoring equipment requires substantial capital due to the system size, DMs have to define which and when a given asset monitoring technology will be installed. Hence, not every asset may have the same monitoring technology and, consequently, the same degradation uncertainty. We formulate the problem as a stochastic optimization problem to capture the dynamic uncertainty in the assets’ condition. Due to its inherent complexity, we employ a meta-heuristic based on a co-evolutionary genetic algorithm to achieve high-quality solutions under reasonable computational time for real world-sized systems. The approach is validated in a case study in the electricity distribution in which a system operator has to manage a portfolio of power transformers operating under different operational conditions.
A Global Approach to Life Management of Pressure Equipment

Corrado Delle Site, Emanuele Artenio, Annalisa Pirone, Maria Rosaria Valleroonda and Silvia Maria Ansaldi
Inail-CTI, Italy.
E-mail: c.dellesite@inail.it

During the life cycle of pressure equipment, it is necessary to investigate the structural integrity in order to avoid failures and outages, which may affect safety and cause lost production. The fabrication phase is quite straightforward as pressure equipment in Europe must comply with Pressure Equipment Directive PED with the application of European or international standards. The following phase is the “putting into service” which is aimed at assuring a correct installation and operation according to the instructions. From this phase onward, the equipment is operated and maintained according to the operating instructions but unfortunately a detailed in-service inspection plan is seldom provided by the manufacturer. Therefore, in order to manage the integrity of the components during their whole life it is necessary for the User to define a general in-service inspection plan. To obtain this goal a specific procedure is under development by the Italian Thermotechnical Committee. According to this procedure it is suggested to carry out a preliminary inspection on the equipment at an early stage of service life which is useful to identify failure modes acting on the item under consideration.

The role of standards is essential to draw up a consistent inspection plan. For this purpose, this paper illustrates the national standards concerning the integrity of pressure equipment issued by the Italian Standardization Body UNI/CTI.

Eventually some case studies concerning failures of pressure equipment in Seveso establishments are presented, aimed at showing how the lack of a specific plan for inspection may bring to near-misses or accidents.

Keywords: Pressure equipment, NDT, Life management, Pip- ing, Reactor, Inspection, SEVESO, Repository.
Parametric Finite Element Analysis on the Design of Railway Crossings for Increased Reliability

Ni-Asri Cheputeh, Valter Luiz Jantara Junior and Mayorkinos Papaelias
School of Metallurgy and Materials, University of Birmingham, Birmingham, United Kingdom.
E-mail: a.v.l.jantarajunior@bham.ac.uk

Crossings allow trains to change tracks and hence are an essential railway component. However, they are also bottleneck points on the rail network under increased rolling stock traffic. Crossings are subject to high loading conditions and therefore, their structural integrity is of critical importance for the safety and reliability of railway operations.

As the wheel switches from one track to another, a vertical impact on the crossing nose or wing rail occurs. Wheel impacts can lead to several forms of damage, such as impact damage, wear, rolling contact fatigue, plastic deformation, among others. The crossing geometry is of utmost importance as the wing rail angle or nose shape can act as stress concentrators, further propagating damage and reducing the asset’s lifetime.

The UK railway network alone comprises around 6,000 crossings, which need to be assessed and maintained with a frequency that ranges from one to three years in busy routes [1]. Modelling techniques, such as finite element analysis, can provide a better understanding of the stress states involved in this complex dynamic problem, leading to the optimization of the crossing geometry for an extended lifetime.

In this paper, we evaluate changes in the design of railway crossings in a dynamic environment via finite element analysis. The effects of changes in the crossing length and angle, train speed, as well as nose design, are evaluated regarding impact and deformation. This paper provides advice on best design practices allowing for more reliable and long-lasting railway crossings.

Keywords: Parametric analysis, Railway crossings, Finite element analysis, Dynamic analysis, Design by analysis, Reliability.

Comparing Macroscopic First Order Models of Regulated and Unregulated Road Traffic Intersections

Ibrahima BA and Antoine Tordeux
School of Safety Engineering and Mechanical Engineering, University of Wuppertal, Germany.
E-mail: a.ibrahima.beliveau@uni-wuppertal.de, a.tordeux@uni-wuppertal.de

Road traffic models allow understanding the properties of the traffic and improving traffic control. To do so, the models must be realistic and also understandable (i.e. with few parameters that can be interpreted and calibrated). Macroscopic models are in particular useful for the simulation of large traffic networks. Yet intersection models are under-represented compared to traffic models on links in the literature (especially urban regulated intersection models). In this contribution, we analyse and compare four minimal regulated and unregulated macroscopic intersection models of the first-order. The two unregulated models are the FIFO model (first-in-first-out, i.e. roundabout-type intersection) and an optimal non-FIFO model for which the flow by direction are independent (i.e. highway-type intersection). The control (i.e. traffic light) operates upstream on the flows going-in for the first regulated intersection model while the control takes place downstream on the directions for the second regulated model. We demonstrate mathematical relationships between the intersection models and analyze the performances using Monte-Carlo simulation. The numerical simulations are performed by assuming random demand upstream and supply downstream, and also random direction distributions. This approach allows us to account for average performances but also for standard deviations and more generally for the distributions of the performances. Indeed, reliable intersections should describe regular performances with small variations. We observe that the optimal regulated intersection models overcome the performances of the FIFO model, on average but also in terms of variability (i.e. reliability). Furthermore, bounds for the four intersection models are provided.

Keywords: Road traffic intersection, Macroscopic modelling, First-order model, Regulated intersection model, Unregulated intersection model, Monte-Carlo Simulation.
Dynamic Agent-Based Transit System Disruption and Recovery Simulation Model
Steffen Blume1, Michel-Alexandre Cardin2 and Giovanni Sansavini1
1Mechanical and Process Engineering, ETH Zürich, Switzerland. E-mail: aasblume@ethz.ch, bsansavig@ethz.ch
2Department of Design Engineering, Imperial College London, United Kingdom. E-mail: m.cardin@imperial.ac.uk

Transit system disruptions can have severe system-wide effects on service delays, crowding levels, and the ability of millions of travelers to reach their destinations routinely and unencumbered. This work therefore develops an agent-based simulation model to understand and augment the resilience of transit systems. Other than existing dynamic agent-based models that focus on small disturbances (1,2) or simplify the re-routing behavior and real-time information availability of passenger agents (3), the proposed simulation model concentrates on severe disruption scenarios and resulting system-wide redistribution of passenger agents that variably alter their decision behavior in response to delays and system alert information. Moreover, the simulation accounts for timetable rescheduling measures. The simulation model has been validated on a case study of the New York City (NYC) subway network with real-world passenger demand data and train vehicle schedules, and produces reliable predictions of passenger flows during both uninterrupted and disrupted conditions. The versatility in testing diverse disruption and recovery scenarios (e.g., fig. 1) is a valuable addition to the preemptive assessment of maintenance problems and a discussion of maintenance resource sharing issues. Later, the proposed fuzzy approach to maintenance resource sharing for production systems in the context of physical asset management concept is proposed. Then, based on the developed concept, a short case study is discussed. Finally, the presented paper gives the possibility to identify research gaps and possible future research directions connected with optimization of maintenance problems in industrial organizations.

Keywords: Urban transit systems, Agent-based modelling, Discrete-event simulation, Disruption management, Simulation-based optimization, Recovery modelling.

Optimisation of Maintenance Policies for a System with Multiple Deteriorating Components
Jiaqi Yin1, Shaomin Wu2 and Virginia Spiegler1
Kent Business School, University of Kent, United Kingdom. E-mail: jy236@kent.ac.uk, s.m.wu@kent.ac.uk, v.l.spiegler@kent.ac.uk

Condition-based maintenance (CBM) is a useful technique for scheduling maintenance policies aiming to reduce operating cost, improving the security of management, and ensuring the stable quality of the products. This paper models the deterioration process of a system composed of multiple components. Each deterioration process is modelled with the Wiener process. When a linear combination of the processes exceeds a pre-specified threshold, the age replacement policy will be carried out as the preventive maintenance for the system. Based on these two replacement policies, the optimized maintenance intervals are then sought.
Multiple Deterioration Processes with Stochastic Arrival Intensity

Inma T. Castro\(^a\) and Lucia Bautista\(^b\)
Department of Mathematics, University of Extremadura, Spain.
E-mail: /\texttt{stanores@unex.es}, /\texttt{lucab@unex.es}

Many systems, such as electronic products, heavy machine tools and piping systems\(^c\), are subject to multiple degradation processes for example. On a pavement network, several different degradation processes, such as fatigue cracking and pavement deformation, may develop simultaneously\(^d\).

For systems subject to multiple degradation processes there are two approaches to model the degradation mechanism of the processes. The first approach considers that all the degradation processes start to deteriorate at the same time. However, as Kuniewski et al. claim\(^e\), it is unlikely that all degradation processes appear at the same time. The second approach assumes that the degradation processes initiate at random times and then grow depending on the environment and conditions of the system. In this approach, two stochastic processes have to be combined: the initiation process and the growth process. For some special cases, the combined process of initiation and growth has a particular mathematical structure. For example, if the degradation processes appear following a non-homogeneous Poisson process (NHPP) and all these processes degrade following the same degradation mechanism, the number of degradation processes that exceed a fixed degradation threshold at time \(t\) follows a non-homogeneous Poisson process.

In this work, a system subject to different deterioration processes is analyzed. The novelty of this work is that the arrival of the degradation processes to the system is modeled using a Cox processes. A Cox process generalizes the non-homogeneous Poisson process since the intensity of arrivals is itself a stochastic process\(^f\). Using the properties of a Cox process, the combined process of initiation and growth is modeled and the system reliability is obtained.

Keywords: Cox process, Multiple degradation processes, Maintenance.
Keywords: Energy systems analysis, Decision making, Multiple criteria, Decision support system, MCDA, Method recommendation, Case studies.

Improving the Reliability of the Critical Asset Maintenance Plan Using Entropy and MAUT Approaches: A Hydropower Plant Case Study
Carlos Alberto Murad1,2, Marjorie Maria Bellinello2, Alécio Julio Silva1,3, Gilberto Francisco Martha de Souza1,3, Adherbal Caminada Netto1,2, Arthur Henrique de Andrade Melani1,2 and Miguel Angelo de Carvalho Michalski1,2
1Department of Mechatronics and Mechanical Systems Engineering, USP – University of São Paulo, Brazil. E-mail: carlos.murad@usp.br, alicijs@usp.br, gfmsouza@usp.br; adherbal@usp.br, melanil@usp.br, michalski@usp.br
2Department of Mechanical and Maintenance Engineering, UTFPR – Federal University of Technology of Paraná, Brazil. E-mail: belinelli@utfpr.edu.br;marjorie.belinelli@usp.br

Achieving higher levels of asset availability is the goal of many industries in different segments. This purpose needs to be supported by actions that aim to increase the reliability of these assets. By improving the robustness of the equipment maintenance plan, operational campaigns can be successfully performed without the occurrence of unexpected system shutdown. The maintenance planning process must be capable of defining the most critical system components to keep asset performance. This research presents an innovative method that identifies critical components of a complex system. In this approach, Entropy method and Multi-Attribute Utility Theory (MAUT) are integrated to assign criteria weights associated with reliability, maintainability, environment, and safety; establishing the classification of criticality for components of a Kaplan hydropower unit, whose maintenance policy is used as a case study. The maintenance activities of the Kaplan system are analyzed and improved under expert opinion. The implementation of the proposed method allowed classifying the ten most critical system components for the Kaplan unit and improving the robustness of its maintenance plan. The maintenance policy developed aims to improve the preventive maintenance and predictive monitoring plan of the hydro-generator, providing increased availability and ensuring the full supply of electricity to society.

Keywords: Kaplan hydropower unit, Enhance maintenance policy, Reliability, Critical components, Multi-Attribute Utility Theory (MAUT).

Resilience of the European Natural Gas Network to Hybrid Threats
Peter Burgherr1,2, Eleftherios Siskos3, Matteo Spada1,2, Peter Lustenberger2 and Arnold C. Dupuy2
1Laboratory for Energy Systems Analysis, Paul Scherrer Institute, Villigen PSI, Switzerland. E-mail: p.burgherr@psi.ch, eleftherios.siskos@psi.ch, matteo.spada@psi.ch
2Global Accumulation Management, Zurich Insurance Company Ltd., Zurich, Switzerland. E-mail: peter.lustenberger@zurich.com
3Department of Political Science, Virginia Tech, Virginia, USA. E-mail: adupuy@vt.edu

There is no commonly used definition of the term hybrid threat, but diverse characteristics and traits are often considered. These include: (1) a combination of coercive and subversive activity, (2) conventional and unconventional methods, (3) state or non-state actors, and (4) activities that remain below the threshold of detection and attribution. In general, hybrid threats affect multiple domains, create ambiguity, and are likely to exploit the vulnerabilities, caused by systemic risks. In recent years, the exposure of energy assets, such as the natural gas transmission system, on hybrid threats has significantly increased. Towards this direction, the current study aims to develop a composite index that measures at a country level the resilience of the European natural gas network against hybrid threats. For this purpose, a comprehensive set of indicators is established and quantified, categorized into four major resilience dimensions: (i) infrastructure, (ii) socio-economic, (iii) political, and (iv) external factors. Indicators are quantified based on in-house data of PSI, data from reliable international sources, or a combination thereof. The evaluation model to be constructed, based on the preference information, provided by selected experts, will be applied in conjunction with an MCDA aggregation framework. This will result in a composite hybrid threat resilience (HTR) index, measuring the performance of the individual countries, and ultimately providing insights and recommendations to support policy makers.

Keywords: Hybrid threat, Energy security, Risk assessment, Resilience, MultiCriteria decision analysis, Composite indicator.
Complexity in 5G Network Applications and use Cases

Rui Li,1,2 Bertrand Decoq,1,3 Anne Barros2, Yiping Fang1,2 and Zhiguo Zeng1,2

1Orange Labs, Clitivier, France. E-mail: rui.li@orange.com, bertrand.decoq@orange.com
2Laboratoire Génie Industriel, CentraleSupélec, Université Paris-Saclay, Gif-sur-Yvette, France. E-mail: anne.barros@centralesupelec.fr, yiping.fang@centralesupelec.fr, zhiguo.zeng@centralesupelec.fr

The fifth generation (5G) of mobile telecommunication network is designed with an ambition to be a network faster, stronger, better and smarter than its predecessor. With the digital transformation, all industry sectors will develop new applications with new requirements regarding telecommunication networks that 5G should be able to meet. To meet the requirement of future 5G use cases and applications, it is crucial to study the complexity of such network system by distinguishing different parts, layers, components as well as their interdependencies. This paper describes the 5G networks from an End-to-End perspective (device, radio network, core network, data network) and from a multi-layer perspective (orchestration, virtualisation/containerization and infrastructure) to show how this system (or system of systems) is complex, especially when we address resilience challenges. Resilience requirements and challenges are further explained by proposing relevant scenarios and use cases. In this paper, we mainly intend to highlight 5G network complexity and open a discussion on methodologies to model such complex network for its resilience study with the hope that this paper could inspire the future study of researchers in the related field.

Keywords: 5G network, Resilience quantification, Resilience metrics, Network applications, Complex system, vertical requirements.
Among the three types of services promoted by the 5G standard, ultra-reliable and low-latency communications (URLLC) will be a cornerstone of new mission-critical services, such as industrial automation, autonomous driving, smart energy, remote surgery, etc.

A key element of 5G systems is the radio link, the availability of which is crucial. In a number of applications, an availability exceeding 99.999% is expected if not downright required. Data transmission must also be effective within an acceptable delay – from one to fifty milliseconds or more – depending on the application under consideration. Weather conditions may hamper transmission and lead to short-lived error bursts; radio links may actually be viewed as self-healing. If the transmission is successful within a "survival time" Δ, it is possible to neglect or omit the link temporary failure.

We address the availability of a radio link in the framework of neglected/omitted failures. Using a new approach, we have been able to compute the variation with Δ of the modified steady-state availability, as well as the Mean Time To Failure (MTTF). After a detailed analysis of the case of exponential lifetime and repair distributions, we turn to arbitrary, more realistic distributions and provide exact, analytical results in the cases of the Gamma, Birnbaum-Saunders, and Inverse Gaussian repair distributions. These expressions could be helpful to assess the availability “budget” of the radio link in the whole end-to-end 5G system. They may be also used in other domains in reliability and system safety where neglected failures are routine, especially in more complex systems.

Keywords: 5G communications, Radio link, Survival time, Availability, Mean time to failure, Neglected/omitted failures, Repair distributions.
Real time damage assessment of building systems subject to hurricanes has attracted significant interest over the past few years owing to its potential to facilitate emergency response and management. The major difficulty in its application lies in the high computational demand stemming from the need to propagate uncertainty through systems that present significant complexity. In this paper, a Kriging metamodel based rapid damage assessment methodology for building envelope systems of engineered buildings is developed to address this issue. Based on the recently proposed framework, envelope damage is characterized through progressive multi-demand coupled fragility models. Within this context, damage measures are defined for each coupled damage state of the system and a full range of uncertainties in structural properties, capacities, as well as wind load stochasticity. By calibrating the metamodels for damage prediction, deterministic mappings are defined from the input space of the site specific wind speed and direction to the output space of the means and standard deviations of the damage measures of the envelope components. The calibrated metamodels can then be used to rapidly predict the expected (with variability measured through the associated standard deviation) envelope damage in terms of predicted site specific maximum wind speed and direction, where these last are estimated in real time through parametric hurricane models. To demonstrate the applicability of the approach, a case study consisting in a 45-story steel building located in Florida is presented. The accuracy and efficiency of the proposed framework, around five orders of magnitude faster than high-fidelity models, illustrate the capability of the approach to provide real-time information necessary to facilitate emergency response decision making.

Keywords: Real time assessment, Building envelope, Hurricane damage, Uncertainty propagation, Metamodeling.
Community Resilience: How to Measure Interactions Among Society and Authorities?
Sahar Elkhady1, Leire Labaka2, Josuene Hernantes3 and Marcos R S Borges4
Industrial Management department, TECNUN, University of Navarra, Spain.
E-mail: 1sahaly@tecnun.es, 2labakall@tecnun.es, 3jherantes@tecnun.es, 4marcobs@tecnun.es

Community resilience is an intrinsic, relational property of a community, that is built and influenced by the interactions and relationships of all members of society. This interaction could be in the form of exchanging information and knowledge, sharing resources, relying on each other, and mutual assistance. In this paper, we are interested in revealing how to measure the interaction and collaboration between all stakeholders in a community; individuals, authorities, and emergency organizations; and how this collaboration affects the different aspects of community resilience. Building upon the literature, we identified six dimensions that unfold the interaction between stakeholders in a community: 1) communication and risk awareness, 2) resource allocation, 3) community networks, 4) preparedness, 5) governance and leadership, and 6) community involvement. Moreover, we identified factors and indicators to measure the stakeholders' interaction and matched them to their corresponding community resilience dimension. We found that there is a lack of indicators representing community involvement and resource allocation dimensions. Moreover, the majority of the indicators identified follow a rating scale (ordinal variables), not an interval variable (absolute number or a percentage) that makes them highly subjective and harder to quantify and assess, necessitating efforts to find easily quantifiable indicators that can be used as proxies for certain variables.

Keywords: community resilience, resilience indicators, resilience measurement, interactions between individuals and authorities, disaster management, society’s networks, disaster resilience.

Decision Making for the Prevention of Intentional Third-Party Damage: An Evolutionary Game Perspective
Xiaoyan Guo1,2, Yulinong Wang1,2 and Laibin Zhang2
1SINOPEC Research Institute of Safety Engineering, State Key Laboratory of Safety and Control for Chemicals, China.
E-mail: 1xguo@sinopec.com, 2ylwqgl@163.com
2China University of Petroleum, Beijing, China.
E-mail: zhanglb@cup.edu.cn

New technology and access to renewable energy sources enable production of electricity by new actors on the energy markets. One such actor is the energy islands, isolated communities that produce and consume a part or all their energy needs. The E-LAND project is developing a toolbox that uses consumers data and external data (weather, energy prices) to deliver an optimal energy schedule, that minimizes the cost of energy production and consumption. The E-LAND solution should support the energy islands to emerge on the energy market using a new technology, with new functionalities, and new ways of thinking performing both their operational and business processes: these changes come with new risks. This paper presents how risks are understood and managed, firstly by the project with regards to the pilot sites, that constitutes a set of first users chosen to represent different industries and energy technologies; and secondly, by the pilot sites themselves. The analysis identified risks with a top-down approach, based on different use cases, designed for each pilot sites. This article is focusing on the development of the risk at the half-way completion of the project, and the accuracy of the risks seen for the pilot sites as the toolbox is being installed and tested.

Keywords: Energy island, Smart grid, E-LAND, Risk management.
edge. Firstly, the mental model is used to simplify the complex analysis process of the traditional Wright manifold theory, following cognitive rules. A threshold value which means a group proportion of the iTP adopting the damage strategy is obtained. It can guide the PLM to adjust the defense strategy flexibly. And then, the prospect theory is adopted to improve the traditional expected return matrix into the income perception matrix. Four equilibrium conditions that both parties need to actively protect the pipeline are obtained. From the view of cognitive ability, fluke mind and psychological of adventure, the two parties of the game are often unable to fully satisfy the conditions and cause frequent accidents. The results of evolutionary game analysis show that increasing the awareness of management/learning costs, probability of occurrence, severity of consequences and punishment of the PLM and the iTP can reduce third-party damage (TPD) accidents and enhance pipeline risk management.

Keywords: Decision making, TPD prevention, Evolutionary game theory, Mental model, Prospect theory.

Session [TH3C]—Maintenance Modeling and Applications
Day/Date/Time Thursday, 23 Sep. 2021/11:35–12:35 hrs
Venue Espace Grand Angle 2

TH3C: 644 11:35 hrs

Queuing Theory and Regression Approach for Maintenance Personnel Estimation: A Case Study of a Brazilian Power Distribution Company

Gabriel Alves da Costa Lima1,2, Luis Augusto Nagasaki Costa1,2, Alberto Magno Teodoro-Filho1,2 and Eduardo Otto-Filho3
1Fundação para o desenvolvimento de Baum, Brazil.
E-mail: gabiela.costalima@fverb.com.br
2Companhia paraense de energia, Brazil.
E-mail: eduardotto@copel.com

Power distribution companies are currently faced with a great challenge: selecting optimal maintenance team size so as to comply with regulation while having below tolerable risk and minimum budget. If concessionary companies select adequate maintenance resources, it will lead to a reduction in operation costs and an increase in profitability at any level of tariffs. Given its complexity, there is no tool aimed to solve such a problem. Therefore these companies must adjust their teams empirically based on feelings. Thereby, this problem is going to be presented herein as a case study. Some power interruptions can be avoided by preventive services such as pruning and mowing, since many of these occur during storms on account of vegetation (trees) contact with electric aerial networks. Other power interruptions cannot be prevented by these services, and thus maintenance crews must act as quickly as possible in order to minimize logistic repair time. Nevertheless, it is not only possible to minimize interruptions and logistic time, but also their incurred costs by a larger maintenance crew. The number of interruptions is estimated using the multiple regression theory, given that the more often preventive services are performed, the greater a reduction in interruptions becomes. On the other hand, logistic time is calculated through the queuing theory, since this is the case. It is also worth mentioning that an increase in maintenance personnel and other resources pushes up costs, but it reduces the length of power outages experienced by customers.

Keywords: Power distribution, Team sizing, Backlog, Queuing.

TH3C: 647 11:55 hrs

Quasi-Opportunistic Inspection of a Critical System

Philip Scarf1, Cristiano Cavalcante2,3, Rodrigo Lopez2,3, Naif Aloai2 and André Luiz de Oliveira e Silva4
1Cardiff Business School, Cardiff University, UK and RANDOM, UFPE, Brazil.
E-mail: Scarf@cardiff.ac.uk
2RANDOM, UFPE, Brazil.
E-mail: naif.aloai@random.org.br
3Imam Mohammad Ibn Saud Islamic University, Kingdom of Saudi Arabia.
E-mail: naifaloai@imamu.edu.sa
4IFPE, Brazil.
E-mail: andreoliveira@ipojuca.ifpe.edu.br

We propose a maintenance policy in which inspections are performed mostly but not exclusively at opportunities that arise at random. The model is motivated by the inspection of pumps in artesian wells that are geographically remote. The system has three states: good, defective and failed. The system operates when it is good or defective. The failed state is immediately revealed. The defective state, which acts as a warning stage prior to failure, is revealed only by inspection. At a positive inspection (defect found) the system is replaced. Maintenance interventions at other nearby systems are opportunities. In our quasi-opportunistic policy, inspection neither uses an opportunity if it occurs too soon nor waits too long for an opportunity. The policy mimics inspections that are planned flexibly so that production stoppages or missions or other events determine the times for inspection, while accommodating statutory or safety regulations about the maximum allowable time between inspections of a system. It also generalises the delay time model. We study the behaviour of the policy numerically for a range of values of the parameters of the model. The
The performance of power distribution companies depends on the availability of electrical energy supply to customers according to contract between governmental institution and the utility. On the other hand, utilities must be profitable for their stakeholders and must carry out optimization of maintenance’s resources. In this effort, the prediction of interruptions is an important topic since it determines resources of preventive and corrective maintenance.

There are several causes of energy interruptions ranging from collision between cars with posts up to shutdowns for expansions. Some of these causes can be reduced with preventive services such as pruning and mowing and, consequently, reduce the number of interruptions. There are other causes that appear to happen randomly over time (lightening, fire etc.) and cannot be prevented with preventive services.

The model to predict the number of interruptions is a supervised machine learning based on multivariable regression composed of 35 independent variables. The database consists of monthly data ranging from 2016 until 2019 for 21 maintenance sectors. Among these 35 variables there are causes such as pruning, mowing and others. For these causes, an increase in maintenance services will decrease the number of interruptions. There are other causes that appear to happen randomly over time (lightening, fire etc.) and cannot be prevented with preventive services.

The proposed policy is always superior in cost terms to both a purely opportunistic policy and a periodic inspection policy.

Keywords: Maintenance, Replacement, Inspection, Opportunistic, Proactive.
Sequential pattern mining is a hot topic in recent years, but its performance degradation data obtained within a certain period of time can predict the performance degradation of the system well. In this paper, the inverse Gaussian (IG) process is used to describe the performance degradation process of the pressure sensor at the centrifugal pump of the underwate

ter vehicle. And in the degradation process, introduce the difference mean function between different individuals to describe the performance degradation process. By introducing multiple sets of data and using Back Propagation Neural Network (BPNN) to filter the data, a set of reliable performance degradation data is obtained. And proposed to use Bayesian theory and Expectation-Maximization (EM) algorithm to collaborate on research and give an explicit expres

sion to obtain the effective estimated value of the model. Through continuous updating and iteration to improve the estimation accuracy, the system’s performance degradation trajectory, Remaining Useful Life (RUL) and RUL probability density distribution graphs are obtained. Using the \(n - \lambda \) index to verify that the accuracy of the actual range and the estimated range can be above 85%, which provides a direction for future research on fault-tolerant control based on performance degradation.

Keywords: BP Neural network, Inverse gaussian process, Performance degradation, Random diffusion coefficient.
In line with (neo)liberal forms of governing, many services critical for covering the population’s basic needs are procured through competitive tendering processes. The effects of public procurement on the reliability of such services and the organizations providing them have been discussed in several studies building on high reliability theories. However, one aspect that remains underexplored is how the transfer of service provision between two contractors influences output reliability and why this is so. In this paper, the case of the latest procurement of Norwegian fixed-wing ambulance services is examined to show how service output was affected. Interorganizational challenges and the process of transferring sharp-end personnel (pilots) to the incoming operator are discussed as two factors influencing output reliability. In terms of the change of operators, coordination and cooperation became challenging, partly due to conflicting views of the procurement process and because of the contractual arrangement. The transfer of pilots resulted in a lack of employee management trust, in turn affecting pilots’ completion of mandatory training programs. Overall, the study shows how critical service reliability can be affected when involved organizations and occupational groups pull in different directions. The transition phase represents a discrete and potentially vulnerable aspect of critical service tendering, as the splitting of service supply into contract periods leads to a temporal fragmentation of service supply.
September 11, 2021 17:38 Research Publishing esrel21-driver

ABM-Based Emergency Evacuation Simulation Considering Dynamic Dependency in Infrastructures
Gibeom Kima and Gyunyoung Heob
Department of Nuclear Engineering, Kyung Hee University, 3732 Dongdong-dong, Gyeong-gu, Yongin-si, Gyeonggi-do 17044, Republic of Korea.
E-mail: rlqja2177@gmail.com, flykwhkhu.ac.kr

Nuclear or radiological accidents can cause significant consequences to people and the environment and may lead to a massive evacuation. Emergency preparedness and response plans are inevitable to mitigate and minimize the consequences. Generally, evacuation planning is based on various assumptions to simplify situations, and the effect of infrastructure systems is not considered explicitly. The infrastructures' availabilities are highly uncertain and difficult to be quantified due to their dynamic dependency, on each other.

In this study, we propose a method to optimize the scenarios of emergency response and evacuation using an agent-based model. Within the simulation platform, the dynamic dependency in infrastructures is modelled by constructing loading-dependent state transition probability. Moreover, we demonstrate how to find major elements in evacuation using importance measures.

Keywords: Emergency evacuation, Dynamic dependency, Agent-based model.

Network Reinforcement Strategy Against Cascading Failures
Jilong Zhonga, Zhoulai Lu, Yan He, Bo Fan and Shaoshi Wu
E-mail: jilongzKim.cn

Network resilience, characterizing the ability of a system to adjust its activity to retain its basic functionality in the face of external perturbation, is highly related to capability against a cascading failure. However, the network resilience evaluation and enhancement strategy remains challenging [1][2]. Here, considering both the structure and nodal load, we develop a network resilience assessment method, and propose a novel resilience reinforcement strategy. We find the performance of the reinforcement strategy has a close correlation with the nodal capacity redundancy. The node with larger capacity redundancy is reinforced, the better reinforcement efficiency. Numerical simulations for both the BA and ER networks showing in Fig. 1 demonstrate that the proposed reinforcement strategy outperforms existing methods in terms of the reinforcement efficiency. We provide a general method to address the potential cascade risk, which will enable us to design more resilient networks against cascading failures.

Keywords: Cascading overload failure, Resilience assessment, Reinforcement strategy.
Bolted structures are commonly used in many automotive and aerospace industries, due to its easy assembly method and low cost. They involves different sources of uncertainty and nonlinear characteristics. The aims of this communication is to model the predictive reliability of these bolted structures by using Monte Carlo Simulation. Firstly a stochastic Finite-Element Method (SFEM) is carried out using Abaqus Software in order to evaluate the dynamic behavior with taking account many stochastics variables (Load applied, Plates geometries, Material…). Furthermore, we integrate these results with an effective method for reliability assessment based in Monte Carlo simulation. A Correlation between these parameters and structure failure probability (Ps) is carried out. Also, we estimate the model parameters by the Euler-maximum Likelihood estimation method. Finally the proposed model is applied in real case, results and conclusions are highlighted.

Keywords: Smart material, Smart material actuator, Shape memory alloy, Shape memory actuator, Data analysis, Reliability analysis, Degradation analysis, Lifetime estimation, Accelerated testing.
Certification of Deep Reinforcement Learning with Multiple Outputs Using Abstract Interpretation and Safety Critical Systems

Faouzi Adjed1,2, Frederic Pelliccia1,2,3,4, Mehdi Rezzoug1,5 and Lucas Schott1,6
1IRIT – SystemX, 8 Avenue de la Vauve, 91220 Palaiseau, France
2Expleo France, 3 Avenue des Prés, 78180 Montigny-le-Bretonneux, France
3Appsys, 22 Rue Gouverneur General Felix Eboue, 92130 Issy-les-Moulineaux, France.
E-mail: afaouzi.adjed@irt-systemx.fr, fpelliccia@expleofroup.com, frederic.pelliccia@appsys-airbus.com, mrezzoug@irt-systemx.fr, lucas.schott@irt-systemx.fr

The certification of machine learning models based on deep learning techniques becomes a major research topic of AI scientific community. In the current decade, several approaches were explored to certify the deep learning outputs by evaluating its robustness. The deep reinforcement learning, to our knowledge, is less studied due to its complexity of output evaluation. Indeed, the output of the classification is binary where it is obvious when the model misses the correct classification by giving non-expected results. However, for the deep reinforcement learning, the decision of the agent could be modified without any safety critical effect. Therefore, a new approach considering these variabilities of decision is needed to be explored. In the current work, we proposed a new approach mixing the robustness and the safety requirements. The approach is applied on autonomous driving and implemented on an Open-Source environments using algorithm of deep reinforcement learning (PPO). The implementation uses the abstract interpretation theory for the robustness whereas the safety processes is based on SOTIF norms. The approach shows promising results and an important contribution of the safety critical systems in AI certification.

Keywords: Safety of deep reinforcement learning, Certification, Validation, SOTIF, Autonomous driving.

Functional Safety of Railway Signaling Systems: Performance Requirements and Evaluation Methods

Aibo Zhang1,2, Lei Jiang3, Min Xie2, Elias Kassa4 and Yiliu Liu1
1Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology (NTNU), Norway
2Department of Advanced Design and System Engineering, City University of Hong Kong, Kowloon, Hong Kong.
3The school of information science and technology, Southwest Jiaotong University, Chengdu, China.
E-mail: ljiang@cityu.edu.hk, yiliu.liu@ntnu.no
4Department of Civil and Environmental Engineering, Norwegian University of Science and Technology (NTNU), Norway.
E-mail: elias.kassa@ntnu.no

Signaling is fundamental to the safe operation of the railway, ensuring that trains are spaced safely apart and conflicting movements are avoided. Railway signals are 'traffic light' devices, which tell a train driver if it’s safe to proceed along the track. A railway signaling system consists of several complex subsystems, e.g. trackside- and onboard signaling systems, which cooperate to ensure the safe operation of railway traffic. The failure of signaling system will weaken both capacity and safety of the railway. It is therefore important to keep the railway signaling system complying with the defined performance requirements. The purpose of this study starts with the summarization of railway RAMS, focusing on railway signaling systems. The tolerable hazard rate (THR) which is an indicator of signaling system performance in EN 50129 (2018) has been compared with the similar indicator PFH (probability of failure per hour) for safety-related systems in IEC 61508 (2010). Based on the commonly used methods for safety-related systems in IEC 61508 (2010), several reliability modeling and analysis methods have been listed and reviewed for the specific system. This paper aims to provide clues for the engineers and analysts in the performance evaluation for the railway signaling system.

Keywords: Railway signaling system, Performance assessment, Tolerable hazard rate, Probability of failure per hour.
Mobile Cyber Gateway Security Control

Jan Procházka1,2, Petr Novobilský1 and Dana Procházková1
1Q-media s.r.o., Pohorie 272/96, 10800 Prague 10, Czech Republic.
E-mail: jpr@qma.cz
2Institute of Forensic Engineering, BUT, Purkynova 464, 612 00 Brno, Czech Republic.

The necessity to protect the critical infrastructure in a way as the cyber-physical system (CPS) is growing with the development of communication and control technologies. The one of elementary approach of protection is to close critical elements to a protected area with secure access. This principle is used in both spaces, the physical and the cyber. Access to these protected areas is then through the gateways. Gateways shall be able identify and authenticate of persons or processes with authorized access and to prevent the access of unauthorized.

The presence of many moving elements (for example, trains) is the specific problem of transport infrastructures, as railway is. The security of moving elements within the CPS must therefore be ensured against both physical and cyber intrusion. We will deal with the cyber gateway of the train at this article, which is called a mobile communication gateway (MCG). The MCG is associated with problems of the standard cyber gateway and the problems specific to the moving systems. It is impossible to secure communication between train and control center through a closed communication system only, it must take place through open space because of extensive infrastructure with assistance of ground communication gateway (GCG).

The MCG design shall ensure the security functions of the gateway as well as sufficient communication capacity. Our control over environmental conditions of MCG is limited because it is in open space, both physical and cyber, often in motion. The MCG therefore needs to be able to respond dynamically to environmental changes caused by deliberate attacks or unintentional changes in the system. The ability of the adaptability must be given to the MCG in design.

Keywords: Cyber-physical system, Multiple independent levels of security, Mobile communication gateway, Railway, Security.
Incidents in Critical Infrastructures (CIs) like smart grids would have a negative effect on the well-being of people and the economy of the country. CIs are increasingly dependent on Industrial Control Systems (ICS) to monitor and steer industrial processes like power generation, transmission, and distribution. Modernisation of such systems enable them to be directly/indirectly connected to the internet. This connectivity makes it susceptible to cyber-attacks in addition to technical failures. There is a need to effectively respond to incidents to recover the system from adversaries promptly and minimise negative impacts.

In our previous work, we developed attack failure distinguisher framework for constructing Bayesian Network (BN) models to support operators to distinguish between attacks and technical failures. Furthermore, we also proposed root-cause analysis framework for constructing BN models to aid operators to determine the attack vector (in case of an attack) or failure cause (in case of a technical failure). However, decision support that enable operators to choose effective response strategies based on the inputs from the above-mentioned BN models is missing, which is the aim of this present study.

The structure of decision trees has the capability to tackle this challenge especially based on their existing applications in domains like medical, safety. In this study, we proposed the decision tree framework to visualise the effective response strategies and demonstrated it using an example from the energy domain.

Keywords: Attack vector, Cyber-attack, Decision tree, Failure cause, Incident response, Technical failure.
The applicability of PhotoVoltaic (PV) systems as an efficient renewable energy supply for an average lifespan of twenty-five years, is backpedalled after being confronted with fault events. Just like all outdoor systems, PVs are often subject to various types of faults and undesired working conditions. At any instance, PV modules can interact with different electrical faults. On the other hand, harsh external conditions can also affect a proper PV system functioning. Efficiency reduction and output deficits are most common results of PV system’s interaction with faulty events, reflected as improper behaviour of the system. From this point, arises the need for a diagnostic and prediction system, which estimates the possibility of a future achievable point, regardless of the PV cells raw materials being used. In the interest of a sustainable and reliable PV system design, this paper aims at exploring different mathematical models of fault predictive techniques. Underlying the artificial intelligence and algorithm-based decision making, various predictive algorithms are surveyed and compared with reference to their ability to perform as required, under given conditions. It also documents current knowledge and actions about these electrolyzers, to prioritize the most critical ones.

A Short Review on Mathematical Algorithms for Predictive Maintenance Techniques and Anomaly Detection in PV Systems
Khaled Osman1,2, Mohamad Ramadan1,3,4, Ahmad Haddad3,5, Thierry Lemenand2,6 and Bruno Castanier1,2
1LARIS EA 7315, Polytech Angers, UNIV Angers, France. E-mail: 1khaled.osman@etud.univ-angers.fr
2School of Engineering, International University of Beirut BIU, Beirut, Lebanon
3School of Engineering, Lebanese International University LIU, Bekaa, Lebanon. E-mail: 4mohamad.ramadan@liu.edu.lb, 5ahmad.haddad@liu.edu.lb
6Thierry.Lemenand@univ-angers.fr, 6bruno.castanier@univ-angers.fr

The current energy infrastructure must evolve towards new competitive large-scale storage solutions. One solution studied by GRTgaz is chemical storage in hydrogen. In this context, project Jupiter 1000 was launched, with the contribution of engineering, technical and research teams from GRTgaz and its partners. The main goal is to conduct an industrial scale experiment on a Power-to-Gas pilot installation with injection into the natural gas transmission network. Jupiter 1000 is the first industrial demonstrator of Power-to-Gas in France with a power rating of 1 MW for electrolysis and a methanation process with carbon capture. Green hydrogen is produced from 100% renewable energy, using two different technologies of electrolyzers: an alkaline electrolyzer and a Polymer Electrolyte Membrane (PEM) electrolyzer.

This will allow RICE’s research team to compare the two technologies on an economical, performance, and safety points of view. The aim of this paper is to provide an overview of the current development status of the reliability study conducted on both types of electrolyzer of Jupiter 1000. The project will be conducted in two phases:

- The first one will focus on understanding the reliability of both technologies, meaning their ability to perform as required, without failure, for a given time interval. This part breaks down the mechanisms of both technologies to simple elementary functions and/or components that will then allow to conduct a Failure Modes and Effects Analysis (FMEA). The FMEA evaluates the severity and probability of occurrence of failures that may occur on these electrolyzers, to prioritize the most critical ones. It also documents current knowledge and actions related to the safety of failures, and how to use them to improve the system.

- The second phase will focus on the durability, which is their ability to perform as required, under given condi-
provide a commonly used and reasonable description of customers. The Random WayPoint (RWP) model fails to capture the end-to-end Quality of Service (QoS), even more important in 5G communications.

The adequate provisioning of network resources becomes crucial for the assessment of the probability of cut or rejected calls. The handover rate, which is the number of crossings of the boundary of cells per unit of time – is therefore important in order to calculate the probability of successful end-to-end data transmission, where reliability and latency are assigned to each link and node of the system. We then apply our model to a few simple architectures that may be implemented in industrial applications. We also address the delicate issue of numerical estimating the Quality of Service.

Handover Rate in Cellular Networks With Anisotropic Random Waypoint Mobility Model: The Elliptic Case

Christian Tanguy
TGI/DATA-IA, Orange Labs, France. E-mail: christian.tanguy@orange.com

Successful operation of a mobile network means preserving the active call when a customer moves from one cell to a neighboring one. Switching from one base station (antenna) to the next necessitates a procedure called handover or handoff, which involves resources that could have been used for establishing calls for new clients. The knowledge of the handoff rate – the number of crossings of the boundaries between cells per unit of time – is therefore important for the assessment of the probability of cut or rejected calls (bad news for a telecommunications company) and/or for the adequate provisioning of network resources. It becomes even more important in 5G communications, as handover failures hamper the end-to-end Quality of Service (QoS).

The number of handovers depends on the mobility pattern of customers. The Random WayPoint (RWP) model provides a commonly used and reasonable description of realistic behavior, and lies at the heart of a general framework proposed by Hyttinen and Virtamo. In previous works, we were able to compute the probability of handovers for circular and triangular RWP domains, with polygonal or circular cells. We demonstrated a quasi-linear dependence of the handover rate on the cell perimeter, the linear dependence being exact for isotropic domain or cell.

We address here the case of an anisotropic RWP domain, namely an ellipse, in order to quantify the influence of the anisotropy on the handoff rate, namely the error being made when using the expression proportional to the cell perimeter. Analytical expressions have been found, which could be useful for other practitioners in the reliability of mobile communications.

Keywords: Cellular networks, Handoff rate, Random waypoint model, Mobility model, Fluid model, Network reliability.

Reliability and Latency: A Joint Framework

Christian Tanguy
TGI/DATA-IA, Orange Labs, France. E-mail: christian.tanguy@orange.com

Along with enhanced Mobile Broadband (eMBB) and massive Machine Type Communication (mMTC), Ultra-Reliable Low-Latency Communication (URLLC) will bring new types of 5G services that may profoundly affect current industries and develop new ones. URLLC applications require end-to-end data transmissions that are very reliable (with error rates lower than 10^{-3}) while exhibiting a small latency (from one millisecond for automated industry to tens of milliseconds for virtual reality).

Assessing a system’s reliability or availability due to equipment failure may become a challenging task, when its architecture cannot be described by a simple series-parallel, underlying graph. Likewise, calculating the probability that the latency of the service remains below an acceptable upper bound is no easy task, even when limited to a radio link, all the more so because of the usual heavy tail of the latency distribution. The probability of a successful operation is expected to decrease because of the introduction of latency constraints.

A proper description of the Quality of Service (QoS) of URLLC should take the two facets of the problem, namely reliability and latency, simultaneously into account. In the present study, we propose such a general framework in order to calculate the probability of successful end-to-end data transmission, where reliability and latency are assigned to each link and node of the system. We then apply our model to a few simple architectures that may be implemented in industrial applications. We also address the delicate issue of numerical estimating the Quality of Service.
A Fast Method to Compute the Reliability of a Connected (r,s)-out-of-(m,n):F Lattice System
Jacek Malinowski¹

1Stochastic Methods Department, Systems Research Institute, Polish Academy of Sciences, Poland.
E-mail: jacek.malinowski@ibspan.waw.pl

An m-by-n matrix of binary components roughly mirrors the arrangement of base stations in a 5G mobile network. As follows from simple geometry, the failure of all four stations in any 2-by-2 submatrix results in lack of signal in the neighboring area. Therefore, a connected (2,2)-out-of-(m,n):F lattice system can serve as an approximate reliability model for a grid of base stations. Such a system is a special case of a connected (r,s)-out-of-(m,n):F lattice system, defined, inter alia, in Zhao et al. (2011). Its reliability is defined as the probability that an m-by-n matrix of binary components contains an r-by-s (or larger) submatrix of failed ones. Computing this probability’s exact value is a highly complex task, as can be observed in Nashwan (2018) and Zhao et al. (2011). Its complexity can be reduced only in some special cases, as shown in Nakamura et al. (2018). It is therefore useful, in the context of mobile networks, to have a possibly efficient near-exact method for computing the reliability of a connected (2,2)-out-of-(m,n):F lattice system. In this paper a fast method is presented allowing to calculate, with good accuracy, the reliability of such a system. The proposed method is based on recursive procedures computing the exact system reliability for m=2,3,4. The obtained results are particularly useful for estimating service availability of a 5G mobile network, where the required value of this parameter is close to one. Thus, the network designer and/or operator should be able to estimate it with high accuracy provided by the presented method.

Keywords: Mobile network, Connected (r,s)-out-of-(m,n):F lattice system, Network reliability, Availability, Recursive algorithm, Approximation.

Resilience of the European Natural Gas Network to Hybrid Threats
Peter Burgherr¹,², Eleftherios Siskos³, Matteo Spada³, Peter Lustenberger³, Arnold C. Dupuy³
¹Laboratory for Energy Systems Analysis, Paul Scherrer Institute, Villigen PSI, Switzerland.
E-mail: ²pete.burgherr@psi.ch, ³eleftherios.siskos@psi.ch, ⁴matteo.spada@psi.ch
²Global Accumulation Management, Zurich Insurance Company Ltd., Zurich, Switzerland.
E-mail: peter.lustenberger@zurich.com
³Department of Political Science, Virginia Tech, Virginia, USA.
E-mail: acdupuy@vt.edu

There is no commonly used definition of the term hybrid threat, but diverse characteristics and traits are often considered. These include: (1) a combination of coercive and subversive activity, (2) conventional and unconventional methods, (3) state or non-state actors, and (4) activities that remain below the threshold of detection and attribution. In general, hybrid threats affect multiple domains, create ambiguity, and are likely to exploit the vulnerabilities, caused by systemic risks. In recent years, the exposure of energy assets, such as the natural gas transmission system, on hybrid threats has significantly increased. Towards this direction, the current study aims to develop a composite index that measures at a country level the resilience of the European natural gas network against hybrid threats. For this purpose, a comprehensive set of indicators is established and quantified, categorized into four major resilience dimensions; (i) infrastructure, (ii) socio-economic, (iii) political, and (iv) external factors. Indicators are quantified based on in-house data of PSI, data from reliable international sources, or a combination thereof. The evaluation model to be constructed, based on the preference information, provided by selected experts, will be applied in conjunction with an MCDA aggregation framework. This will result in a composite hybrid threat resilience (HTR) index, measuring the performance of the individual countries, and ultimately providing insights and recommendations to support policy makers.

Keywords: Hybrid threat, Energy security, Risk assessment, Resilience, Multi-criteria decision analysis, Composite indicator.
A Multistate Bayesian Network Integrating MISOF and Probit Modelling for the Risk Assessment of Oil and Gas Plants

Francesco Di Maio1,2, Oscar Scapinello1,3, Enrico Zio1,4, Salvatore Cincotta2,4, Anna Crivellari2,5, Luca Decarli2,6 and Laura La Rosa2,7
1Politecnico di Milano, Italy
E-mail: f.dimaio@polimi.it, oscar.scapinello@polimi.it, e.zio@polimi.it
2Eni Natural Resources HSEQ, Italy
E-mail: salvatore.cincotta@tenesi.com, anna.crivellari@tenesi.com, l.decari@tenesi.com

In this work, we integrate in the multistate Bayesian Network (BN) modelling approach developed in (Di Maio et al., 2020a) i) the Modelling of Ignition Sources on Offshore oil and gas Facilities (MISOF) for characterizing the mitigative safety barriers and ii) a probit modelling for ultimately evaluating the severity of the accident scenarios (namely, Flash Fire (FF), Jet Fire (JF), Pool Fire (PF), Explosion (EX) or Toxic Dispersion (TX)) and properly assessing the probability of fatality following an accident by considering the actual effects of the mitigative safety barriers in place. The proposed approach is applied to a case study concerning a Loss of Primary Containment (LOPC) accident in the slug catcher of a representative onshore Oil & Gas (O&G) plant.

Keywords: Quantitative Risk Assessment (QRA), Loss of Primary Containment (LOPC), Multistate bayesian networks, Ignition probability, MISOF, Safety barriers.

Risk Assessment of Fires in Residential Buildings – A Case Study in Norway

Bahareh Tajiani1,2, Razieh Amiri1 and Jørn Vatn1
1Department of Industrial and Mechanical Engineering, Norwegian University of Science and Technology (NTNU), Norway.
E-mail: Bahareh.Tajiani@ntnu.no, j.vatn@ntnu.no
2Department of Civil and Environmental Engineering, Norwegian University of Science and Technology (NTNU), Norway.
E-mail: razieh.amiri@ntnu.no

Every year, many fatal and non-fatal residential fires pose a real threat in many countries such as U.S., Norway, Denmark, and Sweden. These fires cause a large number of fatalities, injuries and a huge property damage depending on the fire detection time, designed building, response time by the occupants and etc. Thus, risk assessment of residential fires is of great importance toward elevation of home fire safety towards an acceptable level for everyone. The statistical analysis of the data regarding Norwegian residential fires were mostly related to 1990 to 2014, while there has not been much research on the last five years. This paper analyses the real data of fires in dwellings in Norway from 2015 to 2020 in order to develop a fire risk assessment. For this purpose, two main fire scenario clusters were adopted which considered both measures to prevent fire from occurring and measures to control the fire growth and smoke spread. In Fire extinction scenario, a basic residential sprinkler was designed and investigated in more details to calculate the probability of failure on demand and reliability of the system at different time intervals. Furthermore, some additional measures were introduced to increase the building fire safety grading and to evaluate how they can affect the fatality and injury rate.

Keywords: Risk assessment, Fire, Residential buildings, Scenario clusters, Fire extinction system, Sprinkler reliability.
In a number of applications, stress and strength of a structure – or more generally response and capacity – are actually independent. This was exploited in 7, where classical Monte Carlo was applied to sample separately stress and strength – from here, the name Separable Monte Carlo (SMC) –, thus leading to variance reduction and consequently decrease of needed analysis. Practically, every stress sample is compared to all stress samples, exponentially increasing the global amount of combinations generated with few simulations. This latter technique was also combined to Importance Sampling 5 (Importance SMC or ImpSMC). However, no analytical variance estimation was provided therein, making the gains in terms of number of needed simulations difficult to evaluate.

In the present work we build an analytical variance estimator, devoted to show the power behind the ImpSMC procedure. The analytical estimator itself is used to stop simulations when the required coefficient of variation limit is reached. Applications of ImpSMC to two academic examples are presented in this work. Unbalanced dataset are allowed, opening to the possibility of reducing even more the amount of more complex simulations (often deriving from stress samples generation). In the applications considered herein, the number of required runs is reduced by a factor of 5 with respect to IS, 6.5 to SMC and even 320 if compared to CMC. Gains with respect to CMC and SMC approaches increase as failure targets decrease.

Keywords: Reliability analysis, Separable monte carlo, Importance sampling, Variance estimation.

A New Model of the Network Design Problem with Relays for Maritime Rescuing with Uncertainties

Yue Zhang1, Yiyong Xiao2, Runze Zhao2, Rui Luo2, Shenghan Zhou1, Wenting Chang3, Bang Chen4 and Houxiang Liu5

School of Reliability and Systems Engineering, Beihang University, Beijing, China.
E-mail: changyue1127@buaa.edu.cn, zhaorunze@buaa.edu.cn, chzws@buaa.edu.cn, chenbang@buaa.edu.cn, liuhouxiang@buaa.edu.cn, changyue1127@buaa.edu.cn

In this paper, we presented a mixed-integer linear programming (MILP) model for a new variant of the network design problem with relays (NDPR) and introduced its application on maritime rescuing where aircraft and vessels could be routed as commodities on the network. With the fast development of marine economic all over the world, the security guarantee and disaster relief in open sea area are becoming more important and challenging tasks. Given that uncertain events might occur in any specified open sea areas with estimated probabilities, our proposed model is able to find out the optimal rescuing routes with optimal location of relay stations for a fleet of heterogeneous rescue aircraft/vessels in advance. We considered multiple practical factors faced in the today’s maritime rescue problem, such as the uncertainties of the events, concurrences of multiple missions, heterogeneous types of rescuing equipment, and the return after rescuing. The economical efficiency was also included in the model to serve as an important evaluation index of the rescuing operation plans. Computational experiments on a randomly generated data set were carried out to simulate various types of random multitask with uncertainties and verified the validity of the proposed model. These experiments demonstrated that the model can obtain practical maritime rescue solution with a lower total cost.

Keywords: Network design with relays, Maritime rescue, Demand uncertainty, Mathematical programming, Optimization, Offshore support vessels, Location problem.
Importance Sampling and Sensitivity Analysis for Reliability Assessment of Hybrid Dynamic Systems Represented by Piecewise Deterministic Markov Processes

G. Chennetier¹,², H. Chraibi¹, A. Dutfoy³ and J. Garnier²
¹PERICLES Department, Electricité De France (EDF R&D), 7 Bd Gaspard Monge, 91220 Palaiseau, France
²CMAP (Centre de mathématiques appliquées), École Polytechnique, 91128 Palaiseau, France

A natural way to assess the reliability of a complex industrial system is to carry out numerical simulations that reproduce the behavior of the system. The PyCATSHO⁻¹ tool developed by Electricité De France (EDF R&D) allows the modeling of such systems through the framework of piecewise deterministic Markov processes (PDMP). These processes have a discrete stochastic behavior (failures, reconfigurations, control mechanisms, repairs, etc.) in interaction with continuous deterministic physical phenomena.

It is well known that for sufficiently rare events, crude Monte-Carlo methods require a very large number of simulations to accurately estimate their probability of occurrence. We propose an adaptive importance sampling strategy based on a Cross-Entropy method to reduce the cost of estimating the probability of system failure.² The success of this method depends crucially on the family of instrumental laws used to approximate the optimal law. We construct this family according to the PDMP structure of the system, in particular according to the configuration of its minimal failure groups. Finally, we propose different sensitivity analysis techniques to reduce the dimension of the problem and to determine the respective contributions of different component failure modes to the probability of system mission loss. We present an application of this strategy on a test case from the nuclear industry: the spent fuel pool.

Keywords: Piecewise deterministic Markov processes, Hybrid dynamic systems, Rare event simulation, Importance sampling, Cross Entropy, Sensitivity analysis, Dimension reduction.

Joint Selective Maintenance and Multiple Repairpersons Assignment Problem under Uncertainty

Mingang Yin¹,², Longfei Yue¹,², Tangfan Xiahou³, Yiming Chen³ and Yu Liu³,⁴
¹Engineering Department, A VIC Chengdu Aircraft Industrial (Group) CO., LTD., China
²School of Mechanical Engineering and Automation, University of Electronic Science and Technology of China, China.
E-mail: yinma@mail.neu.edu.cn
³School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, China
⁴Center for System Reliability and Safety, University of Electronic Science and Technology of China, China.
E-mail: xiahoutf@163.com, chen_yiming@foxmail.com, yuliu@uestc.edu.cn

In many industrial maintenance applications, maintenance activities can be simultaneously performed by multiple repairpersons, that is, repairperson assignment problems. The existing works on selective maintenance with multiple repairpersons all assume that the durations of selected maintenance actions to be performed are precisely known in advance as deterministic values. To fill this gap, a new selective maintenance model is proposed in this work to consider uncertainties that originate from multiple repairpersons. Because of the uncertainties associated with the durations of selected maintenance actions to be performed are precisely known in advance as deterministic values. To fill this gap, a new selective maintenance model is proposed in this work to consider uncertainties that originate from multiple repairpersons. Because of the uncertainties associated with the durations of selected maintenance actions to be performed are precisely known in advance as deterministic values. To fill this gap, a new selective maintenance model is proposed in this work to consider uncertainties that originate from multiple repairpersons. Because of the uncertainties associated with the durations of selected maintenance actions to be performed are precisely known in advance as deterministic values. To fill this gap, a new selective maintenance model is proposed in this work to consider uncertainties that originate from multiple repairpersons. Because of the uncertainties associated with the durations of selected maintenance actions to be performed are precisely known in advance as deterministic values. To fill this gap, a new selective maintenance model is proposed in this work to consider uncertainties that originate from multiple repairpersons. Because of the uncertainties associated with the durations of selected maintenance actions to be performed are precisely known in advance as deterministic values. To fill this gap, a new selective maintenance model is proposed in this work to consider uncertainties that originate from multiple repairpersons. Because of the uncertainties associated with the durations of selected maintenance actions to be performed are precisely known in advance as deterministic values. To fill this gap, a new selective maintenance model is proposed in this work to consider uncertainties that originate from multiple repairpersons. Because of the uncertainties associated with the durations of selected maintenance actions to be performed are precisely known in advance as deterministic values. To fill this gap, a new selective maintenance model is proposed in this work to consider uncertainties that originate from multiple repairpersons. Because of the uncertainties associated with the durations of selected maintenance actions to be performed are precisely known in advance as deterministic values. To fill this gap, a new selective maintenance model is proposed in this work to consider uncertainties that originate from multiple repairpersons. Because of the uncertainties associated with the durations of selected maintenance actions to be performed are precisely known in advance as deterministic values. To fill this gap, a new selective maintenance model is proposed in this work to consider uncertainties that originate from multiple repairpersons. Because of the uncertainties associated with the durations of selected maintenance actions to be performed are precisely known in advance as deterministic values. To fill this gap, a new selective maintenance model is proposed in this work to consider uncertainties that originate from multiple repairpersons. Because of the uncertainties associated with the durations of selected maintenance actions to be performed are precisely known in advance as deterministic values. To fill this gap, a new selective maintenance model is proposed in this work to consider uncertainties that originate from multiple repairpersons. Because of the uncertainties associated with the durations of selected maintenance actions to be performed are precisely known in advance as deterministic values. To fill this gap, a new selective maintenance model is proposed in this work to consider uncertainties that originate from multiple repairpersons. Because of the uncertainties associated with the durations of selected maintenance actions to be performed are precisely known in advance as deterministic values. To fill this gap, a new selective maintenance model is proposed in this work to consider uncertainties that originate from multiple repairpersons. Because of the uncertainties associated with the durations of selected maintenance actions to be performed are precisely known in advance as deterministic values. To fill this gap, a new selective maintenance model is proposed in this work to consider uncertainties that originate from multiple repairpersons. Because of the uncertainties associated with the durations of selected maintenance actions to be performed are precisely known in advance as deterministic values. To fill this gap, a new selective maintenance model is proposed in this work to consider uncertainties that originate from multiple repairpersons. Because of the uncertainties associated with the durations of selected maintenance actions to be performed are precisely known in advance as deterministic values. To fill this gap, a new selective maintenance model is proposed in this work to consider uncertainties that originate from multiple repairpersons. Because of the uncertainties associated with the durations of selected maintenance actions to be performed are precisely known in advance as deterministic values. To fill this gap, a new selective maintenance model is proposed in this work to consider uncertainties that originate from multiple repairpersons. Because of the uncertainties associated with the durations of selected maintenance actions to be performed are precisely known in advance as deterministic values. To fill this gap, a new selective maintenance model is proposed in this work to consider uncertainties that originate from multiple repairpersons. Because of the uncertainties associated with the durations of selected maintenance actions to be performed are precisely known in advance as deterministic values. To fill this gap, a new selective maintenance model is proposed in this work to consider uncertainties that originate from multiple repairpersons. Because of the uncertainties associated with the durations of selected maintenance actions to be performed are precisely known in advance as deterministic values. To fill this gap, a new selective maintenance model is proposed in this work to consider uncertainties that originate from multiple repairpersons. Because of the uncertainties associated with the durations of selected maintenance actions to be performed are precisely known in advance as deterministic values. To fill this gap, a new selective maintenance model is proposed in this work to consider uncertainties that originate from multiple repairpersons. Because of the uncertainties associated with the durations of selected maintenance actions to be performed are precisely known in advance as deterministic values. To fill this gap, a new selective maintenance model is proposed in this work to consider uncertainties that originate from multiple repairpersons. Because of the uncertainties associated with the durations of selected maintenance actions to be performed are precisely known in advance as deterministic values. To fill this gap, a new selective maintenance model is proposed in this work to consider uncertainties that originate from multiple repairpersons. Because of the uncertainties associated with the durations of selected maintenance actions to be performed are precisely known in advance as deterministic values. To fill this gap, a new selective maintenance model is proposed in this work to consider uncertainties that originate from multiple repairpersons. Because of the uncertainties associated with the durations of selected maintenance actions to be performed are precisely known in advance as deterministic values. To fill this gap, a new selective maintenance model is proposed in this work to consider uncertainties that originate from multiple repairpersons. Because of the uncertainties associated with the durations of selected maintenance actions to be performed are precisely known in advance as deterministic values. To fill this gap, a new selective maintenance model is proposed in this work to consider uncertainties that originate from multiple repairpersons. Because of the uncertainties associated with the durations of selected maintenance actions to be performed are precisely known in advance as deterministic values. To fill this gap, a new selective maintenance model is proposed in this work to consider uncertainties that originate from multiple repairpersons. Because of the uncertainties associated with the durations of selected maintenance actions to be performed are precisely known in advance as deterministic values. To fill this gap, a new selective maintenance model is proposed in this work to consider uncertainties that originate from multiple repairpersons. Because of the uncertainties associated with the durations of selected maintenance actions to be performed are precisely known in advance as deterministic values. To fill this gap, a new selective maintenance model is proposed in this work to consider uncertainties that originate from multiple repairpersons. Because of the uncertainties associated with the durations of selected maintenance actions to be performed are precisely known in advance as deterministic values. To fill this gap, a new selective maintenance model is proposed in this work to consider uncertainties that originate from multiple repairpersons. Because of the uncertainties associated with the durations of selected maintenance actions to be performed are precisely known in advance as deterministic values. To fi...
Optimal Heuristics for Reliability-Based Inspection and Maintenance Planning

Daniel Straub1 and Elizabeth Bismut

Engineering Risk Analysis Group, Technische Universität München, Germany.
E-mail: d.straub@tum.de

Inspection and maintenance planning of most engineering systems is based on prescriptive rules and ad-hoc planning. There is hence a significant potential for savings or improved performance by the application of smarter inspection and maintenance (I&M) planning. In general, I&M planning belongs to the class of sequential decision processes. Finding the theoretically optimal solution for such processes in realistic engineering systems is not possible at present, due to the complexity of these systems and the involved maintenance processes, which lead to intractably large state and policy spaces. Heuristics, which parametrize the policies, offer an alternative that is computationally tractable. If chosen well, these heuristics can lead to near-optimal I&M policies. In addition, they have the advantage of being easily interpretable, which is of importance in practical implementations.

In this contribution, we look at two example systems, offshore steel structures and feeder pipes in nuclear power plants. We utilize physics-based stochastic models to describe the system performances and to assess the effect of inspections and maintenance on the system reliability. We discuss the formulation of possible heuristics for inspection and maintenance policies. On this basis, we calculate the benefit of using advanced reliability-based I&M planning over existing rule-based I&M planning in terms of the I&M costs and the resulting risks.

Keywords: Deterioration, Reliability, Inspection, Maintenance, Sequential decision making.

How to Use Prescriptive Maintenance to Construct Robust Master Production Schedules

David Lemoine1 and Bruno Castanier2

1IMT Atlantique, L2SN, Nantes, France. E-mail: david.lemoine@imt-atlantique.fr
2Université d’Angers/AMR, Angers, France. E-mail: Bruno.Castanier@univ-angers.fr

Prescriptive maintenance is positioned as the highest level of maturity and complexity of knowledge-based maintenance. It seeks in part to integrate actions on future constraints, especially operational constraints, into decision making. It is in this context of production management that our work is positioned, with planned production defining here the operational constraint that can be modulated to a certain extent. However, it should be noted that, although a desire for agility in production is sought, master production planning remains the steering production tool. The goal of this paper is to elaborate a methodology for providing optimized tactical production plans that remain robust to a dynamic maintenance decision based on the overall production system health state. The robustness of the tactical planning is defined here as a decision parameter and reflects the probability that the Master Scheduling Program will be realized. The methodology has been implemented in a decision-making program that will be briefly presented.

Keywords: Maintenance, Master production scheduling, Feasibility.
fully comprehensive reliability analysis, all stress variables that lead to a failure must be considered. This is not sufficiently possible with a simple univariate approach. With the new approaches, it is now possible for the first time to consider different stress variables, their changes and their effects on the technical system under investigation in a field study analysis. The presented approach for the multivariate prognosis model considers in its general idea the prognosis of stress-dependent reliability parameters. Usually, time-dependent reliability metrics are specified in practice. A new approach is presented that transforms stress-dependent reliability metrics into time-dependent reliability metrics using the multivariate annual stress distribution. Furthermore, model corrections are introduced to increase prediction quality, which provide significant improvements in prognosis quality.

Keywords: Failure, Reliability, Electronic control unit, Multivariate reliability parameters, Prediction, corrective models.

On the meaning of assurance
Andreas Hafner1, Carla Ferreira2, Christian Agrell2, Dag McGeorge2, Erik Andreas Hektor, Frank Berre Pedersen1, Meine van der Meulen1, Odd Ivar Haugen2, Simen Eldevik1 and Tore Myhrvold2
Group Technology and Research, DNV, Norway.
E-mail: andreas.hafner@dnv.com

In this paper, the concept of assurance is discussed in relation to knowledge, uncertainty, risk and complexity. This is motivated by the authors’ belief that fundamental principles from risk management and complexity science will be important to tackle future assurance needs posed by increasingly complex socio-technical and cyber-physical systems.

It is argued that the presence of risk is what makes assurance warranted. Specifically, it is argued that assurance may be understood as the management of risk related to knowledge-based claims, in contexts where trust in the claims is consequential. Knowledge is here understood as justified beliefs derived from information and scientific reasoning. Since both information and reasoning in general will be incomplete and imperfect, a degree of uncertainty is associated with the validity and veracity of claims. The association of uncertainty and conformance to claims in assurance indicates a relationship between assurance and the concept of risk, with risk defined as a combination of consequences and uncertainty.

Part of the risk of concern in the context of assurance stems from complexity which can make systems difficult to understand and predict. Accordingly, complexity is discussed as a driver for assurance needs, especially the need for validation of claims about complex assurance targets and assurance target properties.

In relation to trust, we discuss the role of trust providers, and trust enablers such as independence, transparency, and governance.

Keywords: Assurance, Uncertainty, Risk, Complex systems, Trust, Verification, Validation.

Uncertainty in a Hurricane Vulnerability Model
Roberto Vicente Silva de Abreu1,2, Jean-Paul Pinelli1,2, Kurt Garley2 and Karthik Yarasuri2,3
1Civil Engineering Department, Florida Institute of Technology, Melbourne, FL, USA.
E-mail: rsilvadeabre2014@my.fit.edu; jpinelli@fit.edu
2Civil Engineering Department, University of Florida, Gainesville, FL, USA.
E-mail: kgurl@ufl.edu; kyarasuri@ufl.edu

This paper deals with the treatment and effect of uncertainty from stochastic variables in the Low-Rise Commercial Residential (CRLR) component of the Florida Public Hurricane Loss Model (FPHLM), for buildings with 1 to 3 stories. The FPHLM is a probabilistic risk model sponsored by the Florida Office of Insurance Regulation to estimate insured losses in residential buildings due to hurricanes-induced wind and rain, in the State of Florida. The FPHLM uses Monte Carlo simulations to model the wind, wind debris, and wind-driven rain induced damage to the components of the building envelope and the building interior. The final outputs are a library of vulnerability functions that provide monetary damage ratio (cost of repair to building value) as a function of wind speed for different building classes. This paper discusses the most recent model updates (version 8.1), with a focus on the quantification of interior and contents damage from water ingress, and the corresponding uncertainties. In the new 8.1 version, the model adopts a component approach to explicitly propagate the water ingress among interior and contents components of the building. The resulting moisture content level of each interior component defines its damage while the volume of water reaching each component defines the damage to contents. In this new approach, many of the variables involved are stochastic, including the water absorption capacity of each interior component. A variety of sources, including laboratory tests, industry standards, and manufacturer catalogues informed the probability distribution functions (pdfs)
of these variables. The paper describes how the FPFLM team characterized the pdfs of these variables and investigates the relationship between the variables and the nonlinear processes leading to the vulnerability functions. The types and sources of uncertainty are identified, and strategies to quantify and reduce the uncertainty are proposed.

Keywords: Loss prediction model, Interior damage, Statistical vulnerability process, Non-linearity.

Hierarchical Bayesian Inference for Quantification of Uncertainty in Multi Level Models of Dynamical Systems

Xinyu Jia \(^a\) and Costas Papadimitriou \(^b\)

Department of Mechanical Engineering, University of Thessaly, Volos, Greece.
E-mail: jiaxinyu@uth.gr, costasp@uth.gr

Calibration of model parameters is increasingly playing a key role in the process of accurately predicting the responses of full-scale dynamical systems. Such systems often exhibit complexities arising from the assembling process and nonlinearities manifested at various modelling levels, from material to component to sub-system to system level, during operation under harsh environments. Recent advances \([1-3]\) have enabled to calibrate the model parameters, quantify the uncertainties and predict uncertainties to output quantities of interest using data obtained from the system level. However, data at the system level may be lacking or be expensive to obtain or, usually, are not adequate to reliably calibrate material, component or sub-system parameters. In this context, we extend the framework in \([2, 3]\) and present a systematic approach to calibrate the system model parameters using information and data from lower system levels which share common parameters with higher system level. The proposed approach can properly take into account the uncertainty in the component model parameters due to variabilities in experimental data, environmental conditions, material properties, manufacturing process, assembling process, as well as nonlinear mechanisms activated under different loading conditions. For this, the uncertainty is embedded within the structural model parameters by postulating a probability model for these parameters that depend on hyperparameters. Sampling techniques as well as asymptotic approximations are used to carry out the computation or reduce the computational burden in the proposed Bayesian multi-level modelling framework. Selected applications in structural dynamics are used to demonstrate the effectiveness of the proposed framework.

Keywords: Hierarchical bayesian inference, Parameter estimation, Uncertainty quantification and propagation, Multi-level models, Structural dynamics.

A Probabilistic Approach for the Consideration of Measurement Errors in Metrology

M. Gille \(^1, 2\), P. Beaurepaire \(^3\), A. Dumas \(^2\), N. Gayton \(^1\) and T. Yalamas \(^2\)

\(^1\)SIGMA Clermont-Ferrand, France.
E-mail: pierre.beaurepaire@siga-clermont.fr, nicolas.gayton@siga-clermont.fr
\(^2\)PHIMECA Engineering, France.
E-mail: pierre.beaurepaire@phimeca.com, tony.yalamas@phimeca.com
\(^3\)PHIMECA Engineering, France.
E-mail: gaetan.gille@phimeca.com

Metrology is a key stage in industry as it validates the quality requirements at different steps of the production process. In dimensional metrology in particular, validation consists in its classic form, in measuring dimensions of interest – dimensions intended for an assembly for example. Two sources of uncertainties can be associated with measured dimensions:

- Uncertainties in the true value of the dimension, which are caused e.g. by the vibrations of the machines during the manufacturing process, tear and wear of the tools, etc.;
- The measurement errors, which cannot be avoided and are caused e.g. by thermal expansion of the parts, inaccuracies of the measurement tools.

The probabilistic approach is used and these uncertainties are modeled as random variables. The distribution associated with the measurement error is assumed to be known. The objective of this work is the “correction” of the measurement errors. At first, the probability density function associated with a measurement for a batch of parts is considered. A deconvolution procedure is applied to identify the distribution of the true dimension. The method of the maximum of likelihood is used here. An arbitrary distribution (Gaussian, lognormal, Weibull, etc.) is selected for the true dimension and its parameters are identified such that they lead to the best fit with the measurement data.

The correction is then applied for each measured value using a Bayesian method. The probability density function identified at the previous step is used as the prior distribution and the measurement error defines the likelihood function. The posterior distribution is then associated with the true value of the dimension. This provides the engineers with the best information available regarding the true dimension; its exact value cannot be identified and is therefore modeled as a random variable.

Keywords: Metrology, Uncertainties, Statistics, Deconvolution, Bayesian.
Examining the Effect of a Proposed Operator Support System on Human Error Probability Estimation

Awwal M. Arigi1 and Jonghyun Kim2

Department of Nuclear Engineering, Chosun University, 309, Pilmun-daero, Dong-gu, Gwangju, South Korea.
E-mail: awwal.arigi@chosun.ac.kr, jonghyun.kim@chosun.ac.kr

As the name implies, an Operator Support System (OSS) is meant to ease the work of operators as they perform the task of managing the operations of a complex system; in this case, a nuclear power plant (NPP). This is to ensure that from a human reliability analysis (HRA) perspective, the human error probabilities (HEPs) are reduced while keeping the same level of efficiency in the operations. However, it is necessary to confirm that the intended goals of the OSS are being achieved. The advanced power reactor 1400 (APR-1400) can be regarded as an evolutionary nuclear power plant and has a fully digitalized main control room (MCR). Recently, further improvements are being planned to support the operator tasks within its MCR. The possible OSS features currently undergoing testing are introduced in this paper. This work evaluates the effects of some proposed operator support features in the MCR. This evaluation is done by comparing the human error probabilities estimated via the cause-based decision tree (CBDT)/technique for human error rate prediction (THERP) method for both general and abnormal operations. The results show that the effect of the OSS based on the HEPs depends on the type of operation and scenario. The limitations to the use of the current HRA methods in general, including the CBDT/THERP method for estimating HEPs in such MCRs are discussed. The framework presented in this paper will be useful in future efforts to analyze OSS effects with other human reliability analysis methods.

Keywords: Operator support, Control room, Human error probability, Human factors, Digital MCR, CBDT.
Analyzing the Validity of a Systematic Human-HAZOP Method for Human Error Identification in the Process Industries

<table>
<thead>
<tr>
<th>Session</th>
<th>TH4F: 737</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day/Date/Time</td>
<td>Thursday, 23 Sep. 2021/14:00–15:20 hrs</td>
</tr>
<tr>
<td>Venue</td>
<td>Espace Grand Angle</td>
</tr>
</tbody>
</table>

Guandun Wang¹, Su Hu², Feng Wang³, Zhan Dou¹, Yichen Jiang¹, and Guan Yang¹,²

¹College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, China. E-mail: yang3926@buct.edu.cn
²Yangzi Petrochemical Company Ltd., SINOPEC, Nanjing, China

The rate from process-industry accidents has risen considerably in recent years. These accidents often cause human casualties, economic loss, and environmental pollution. Statistics show that majority of process-industry accidents (over 80%) are resulted from unsafe behaviors. Identifying human errors allow the development of appropriate prevention and mitigation strategies. Therefore, a systematic Human-HAZOP method is proposed in this paper. To illustrate its validity, the "7·12" major explosion and fire accident of Yibin Hengda Technology Co., Ltd. is selected as a case study. The effectiveness and rationality of the proposed method are also verified by comparing with similar identification results from the SHERPA. In conclusion, the systematic Human-HAZOP method can be popularized for a thorough and consistent identification of human errors in the process industries.

Keywords: Human error identification, Systematic Human-HAZOP, Process-industry accidents, SHERPA, validity.

Probabilistic Design for Civil Engineering Infrastructure Using Vine-Copulas

<table>
<thead>
<tr>
<th>Session</th>
<th>TH4F: 447</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day/Date/Time</td>
<td>Thursday, 23 Sep. 2021/14:00–15:20 hrs</td>
</tr>
<tr>
<td>Venue</td>
<td>Espace Grand Angle</td>
</tr>
</tbody>
</table>

Robert Lanzafame¹, Mike Timmermans³, Felix Orlin¹, Susana Sello Vala¹ and Oswaldo Morales-Nápoles¹

¹Faculty of Civil Engineering and Geosciences, Delft University of Technology, The Netherlands. E-mail: R.C.Lanzafame@tudelft.nl

In practice, when it comes to the reliability-based design of infrastructure it is most common to treat random variables as independent. While this assumption simplifies the probabilistic analysis considerably, it leaves out useful information that may result in a safer and more efficiently designed structure. Often, there are suitable data to quantify the dependence between random variables in a particular problem, but appropriate numerical methods are not readily available or known to the analyst. Alternatively, design codes and assessment protocols in general have not been developed which provide guidance on how to include multivariate analysis in the design of a structure, especially in the context of a univariate return period (or exceedance probability) based procedure. Thus, many design decisions are made after assessing multiple failure mechanisms independently, despite being influenced by the same random variables, or by relying mostly on well-informed, but subjective, decisions.

As such, the need for incorporating multivariate analysis into the reliability-based design approach is becoming increasingly recognized. Three example cases from our experience at the Delft University of Technology are provided where vine-copulas have been used to improve the design of a structure. The case studies consider open-sea waves or ship berthing loads, with up to six variables considered in the vine-copula model. Apart from vine-copulas, probabilistic methods include extreme value analysis, Monte Carlo simulation and the first-order reliability method. When compared to a conventional reliability-based design approach, a more efficient final design was produced for some case studies, in terms of size and/or cost, for the same safety level. In addition, for a design methodology based on load scenarios with a specified exceedance probability, a higher confidence in the final design reliability is obtained when information from the dependent multivariate analysis is considered. The approach described herein is based on open-sourced computational tools and can be immediately used to improve the insight and decision making capability of infrastructure designers and owners. Future work should consider design cases where a vine-copula can be applied to a situation with strong dependence between up to seven variables.

Keywords: Vine-copula, Structural reliability, First-order reliability method, Rosenblatt transformation, Probabilistic design, Civil infrastructure.
Speed railway bridges. The former prevents ballast instability to ensure running safety, and the latter attempts to limit the acceleration of the car-body below the level at which passenger comfort is disturbed. The previous studies are mainly concerned with the destabilization of the ballast, nevertheless the possibility of the maximum deflection occurrence should not be underestimated. Moreover, the literature indicates the need to improve the current design requirements including the minimum allowable mass and frequency of bridges, which requires solving optimization problems based on modern requirements. Therefore, a probabilistic framework with simulation-based techniques is used to evaluate the violation probability of the above limit states and distinguish dominant criteria under different conditions, i.e., bridge span length and operational train speed. First, the performance of the subset simulation method is compared with the Latin Hypercube-sampling based Monte-Carlo approach supported by surrogate models. Polynomial chaos expansion (PCE) surrogate models are trained for this objective. Then, the resulting violation probabilities are evaluated for the two considered limit states using the approach with better performance.

Keywords: High-speed railway bridges, Bridge dynamics, Running safety, Passenger comfort, Structural reliability, Subset simulation, Surrogate model, Polynomial chaos expansion.

Nonparametric Confidence Interval for Quantiles. A Comparison of Methods in the Context of Safety Analysis of Npps

J.F. Villanueva1, 2, Ana Sánchez3, 4, Sebastián Martorell2, 5, Sofia Carlos1, 2, Isabel Martín5, 6, Rafael Mendizábal7, 5 and Javier Ramón Camarma2, 5

1Department of Chemical and Nuclear Engineering, MEDASEGI research group, Universitat Politècnica de València, València, Spain. E-mail: a.sanchez@upv.es, amsanchez@upv.es,

2Consejo de Seguridad Nuclear (CSN), Pedro Justo-Dorado Dlemans 11, Madrid, Spain. E-mail: jvillanuevaj@csn.es, jramoncamarma@csn.es

This paper presents a comparison between different nonparametric methods for quantile and confidence interval estimation for obtaining a more realistic safety analysis of nuclear power plants based on the Best Estimate Plus Uncertainties (BEPU) approach. In this study, ten different quantile and two confidence interval estimation methods to sample sizes of 59 and 93 are applied in the uncertainty analysis of a Large-Break Loss of Coolant Accident, LBLOCA, in the cold leg of a Pressurized Water Reactor using the thermal-hydraulic code TRACE. The results obtained with the different methods considered are compared with the Wilks' method with respect to the average coverage probability, accuracy, and bias.

Keywords: Uncertainty, Quantile estimation, Confidence
Characterizing Previously Unknown Dependencies in Probabilistic Risk Assessment Models of Nuclear Power Plants

John David Hanna
Region III Office, US Nuclear Regulatory Commission, USA.
E-mail: john.hanna@nrc.gov

The US Nuclear Regulatory Commission (NRC) maintains a set of Level-1 probabilistic risk assessment (PRA) models, called standardized plant analysis risk (SPAR) models, which are the analytical tools used by the agency to perform risk assessments. The SPAR models include elements of the initiating events (IE), mitigating systems (MS) and to a limited extent barrier integrity (BI) cornerstones.

Over the last 10 to 15 years, several events have occurred at nuclear power plants (NPPs) in the US which had substantial risk and where multiple cornerstones were simultaneously affected. The risk insights from these domestic events may indicate an existing completeness uncertainty, specifically that there are ‘dependencies’ between certain initiating events and availability/reliability of mitigating systems which are not currently captured in the PRA models.

These previously unrecognized dependencies can be included in the SPAR models and thus captured in subsequent risk assessments. This paper will review several examples from US commercial NPPs where these dependencies manifested themselves and demonstrate that the risk of lower intensity events (far less than a beyond design basis event) can be significant. Further, this paper will describe potential PRA modeling improvements and provide insights that may lead to modifications to existing procedures, plant structures, systems & components such that the previously unmeasured risk might be lowered, providing a benefit to public health and safety.

Keywords: Nuclear power, Dependency, External event, PRA, ‘sunny day’ event, Fukushima dai-ichi.

Modeling Infrared Spectra: An Algorithm for an Automatic and Simultaneous Analysis

C. Butucea1, J.-F. Delmas2, A. Dutfoy3 and C. Hardy3,4

1CREST, ENSAE, IP Paris, France.
E-mail: cristina.butucea@ensae.fr
2CERMICS, Ecole des Ponts, France.
E-mail: jean-francois.delmas@enpc.fr
3EDF R&D, Palaiseau, France.
E-mail: anne.dutfoy@edf.fr
4clement.hardy@enpc.fr

Infrared spectroscopy is a widely used technology for nondestructive testing of materials. We propose a novel approach to automatically and simultaneously analyze a dataset of infrared spectra. They are modeled by linear combinations of peaks whose shape and position are parametrized. The observed data consist of linear combinations of the time-discretized peaks with an additive noise. In order to recover the peak parameters, common to all the dataset, and the associated amplitudes, which are specific to each spectrum, we formulate a penalized non-linear optimization problem. In this context, the penalization ensures that the spectra are recovered using a sparse set of common peaks.

Due to the non-convex nature of the problem and the continuous nature of the parameters, a resolution via standard procedures is out of reach. Therefore, we propose an off-the-grid algorithm with alternating convex optimization updates (to estimate the amplitudes of the peaks) and non-convex steps (to estimate the location and the scale of the peaks). In practice, this gives satisfactory results and provides sparse solutions.

We also study the numerical performances of the algorithm on simulated data and on real infrared spectra. The latter come from polychloroprene rubbers used in a marine environment at different aging levels. Eventually, we use a clustering algorithm in order to identify the peaks corresponding to the chemical components involved in the aging process of this material.

Keywords: IR spectroscopy, Convex optimization, Non-convex optimization, Group-Lasso, Sparsity.
As the ice-sheet of the Arctic is melting due to the effect of global climate change, the Northern Sea Route stretching from the Kara Gate to the Bering Strait has seen a resurgence in interest. Stakeholders see the prospects of the route as a valuable alternative to the Malacca Strait, and Panama and Suez Canals, but also as a new venue for transporting petroleum, liquefied natural gas, and for tourism. Consequently, this spur of interest has given rise to new challenges within polar maritime and environmental safety, leading to the development of its corresponding international and national legal frameworks. The purpose of this paper is therefore to uncover the possible future scenarios of the Northern Sea Route and their corresponding risks, by considering the involved stakeholders, the development of technologies, legislature, regulation, and the global geopolitics that shape it. To achieve this, we employ the general morphological analysis framework to address the state of affairs of the problems to counteract the subjective, nonquantifiable, non-linear, and non-delineated nature of the scenarios. The result is an interactive inference model, which was employed with contextual agency to deduce that the following dimensions: East/West Relations, Global Environmental Politics, and Technical and Navigational Requirements, were the most pivotal for the formation of different futures. The interplay between the connections of these dimensions as parameters clearly formed distinct opposing scenario clusters for possible futures. Concluding, we identify relations, technology, and environmental politics as the strategic areas to target to shape the future of the Northern Sea Route.

Keywords: Methodology, Scenario, General morphological analysis, Risk, Uncertainty, Northern sea route.
Offshore installations spend millions annually trying to guarantee the integrity of their equipment. The challenge lies in determining where to apply the industry’s always finite and limited resources to provide the greatest benefit. Risk-based inspection (RBI) was developed in the oil industry to assist in the identification of the highest risk equipment (working with the respective failure modes) and also to design an inspection program that not only identifies the most relevant failure modes but also reduces your chances of occurrence.

This study is part of a project whose objective is to develop a methodology to monitor the integrity of the equipment, optimizing inspection policies, based on the risk associated with the operation of Christmas trees in subsea operations. The results of this phase of the project include the study of two typical configurations of Christmas trees and the evaluation of their FMECA's, which were based on the database OREDA (SINTEF 2015a; SINTEF 2015b), on information available in the literature and information of equipment suppliers. Finally, a classification of Christmas trees components is provided based on their risk indices.

These results contribute to the performance of more effective risk analyses in the offshore industry, since data on this equipment is scarce in the literature, especially data related to their configurations, failure probabilities, inspection methods and failure detection probabilities.

Keywords: Xmas tree, FMECA, RBI, Criticality, Failure modes, Subsea, Offshore.

TH4I: 758

An Artificial Neural Network Based Decision Support System for Cargo Vessel Operations

Mei Ling Fam1, Zhi Yung Tai2 and Dimitrios Konovessis3

1Singapore Institute of Technology, Singapore. E-mail: meiling.fam@sgtech.aero.sg,
2Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy.
3Department of Computer Science, University of Milano-Bicocca, Italy.

There is increasing interest in understanding fuel consumption from the perspective of increasing energy efficiency on a vessel. Thus the aim of this paper is to present a new framework for data-driven estimation of fuel consumption by employing a combination of (i) traditional statistical analysis and (ii) Artificial Neural Networks. The output of the analysis is the most frequently occurring fuel-speed curves corresponding to the respective operational profile. The inputs to the model consider important explanatory variables like draft, sea current and wind. The methodology is applied to a case study of a fleet of 9000 TEU vessels, in which telemetry data on the fuel consumption, vessel speed, current, wind direction and strength were analysed. The performance of the method is validated in terms of error estimation criterion like R^2 values and against physical phenomena obtained from the data. The results can be used to study the economic and environmental benefits of slow-steaming and or fuel levies, or by extending this part of the model into exergy analysis for a more holistic review of energy saving initiatives.

Keywords: Fuel consumption in vessels, Artificial neural networks, Telemetry data.

TH4I: 311

15:00 hrs

Decision Making Approaches for Safety Purposes in Working Environments with Human-Technology Interaction

Silvia Carra1, Luigi Monica2,3 and Giuseppe Vignali3

1Department of Technological Innovations and Safety of Plants, Products and Anthropic Settlements, INAIL, Via Roberto Ferruzzi 38, 00043 Rome, Italy. E-mail: silvia.carra@inail.it, l.monica@mail.it
2Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy. E-mail: giuseppe.vignali@unipr.it

Human-Machine Interaction (HMI) appeared during the first Industrial Revolution, when machines were introduced as tools functional to workers’ needs. With the arrival of automation systems in the 70s, workers discovered the necessity to be re-skilled to work alongside machinery. The recent advent of Industry 4.0 also led to Human-Technology Interaction (HTI), since new technologies furnish connections and algorithms for a safe and effective interaction between humans and autonomous systems.

Today a transition from “interaction” to real “collaboration” between humans and machines can be observed and companies need to adopt adequate decision making approaches. A careful assessment of both advantages and disadvantages of using technologies is needed, since they can improve safety, but they can also add new industrial and occupational risks.

Based on an analysis of international literature and European technical standards, the present study aims to lay the foundation for a methodological framework supporting companies during the decision process of establish-
ing safety convenience of integrating human and technological components. Some possible models and decisional approaches are extracted from literature and used to identify useful criteria to be declined for the specific topic of safety.

The study is also thought as a support for possible future introductions of new safety standards and validation procedures for safety skills of industrial collaborative technologies.

Keywords: Human-machine interaction, Industry 4.0, Safety, Emerging risks, Standards, Decision making.

TH4I: 415
Human – Collaborative Machine Interaction: The Effects on the Standardization
Sara Anastasi1, Luigi Monica1, Marianna Madonna2 and Mario Di Nardo3
1Technological Innovations Department, INAIL, Rome, Italy. E-mail: s.anastasi@inail.it, l.monica@inail.it
2Operational Territorial Unit of Naples Certification, Verification and Research Area, INAIL, Naples, Italy. E-mail: m.madonna@inail.it
3Department of Materials Engineering and Operations Management, Faculty of Engineering of Naples “Federico II”, Naples, Italy. E-mail: mario.dinardo@unina.it

Recent studies have highlighted the need to investigate the new human-machine interaction in smart factories. The enabling technologies of the fourth industrial revolution allow new modes of interactions between operators and machines; they cooperate in executing numerous complex and high-precision tasks sharing the same workspace. According to the concept of Operator 4.0 proposed by Romeo [1], the collaboration between man and machine includes both “cooperative work” with robots, but also “work aided” by machines.

In particular, among the types of Operator 4.0, the collaborative operator works together with collaborative robots, while the super-strength operator uses wearable exoskeletons to increase his strength to perform manual activities without effort.

In this perspective, this work wants to highlight the regulatory aspects concerning the safety aspects of human interaction with collaborative robots, autonomous guided vehicles and exoskeletons. This paper focuses on emerging safety aspects related to these collaborative machines and their impact in terms of Essential Health and Safety Requirements (EHSRs) in the Machinery Directive. In this regard, it is necessary to underline the gap among the increasing maturity of the technology and the lack of analysis and route for this specific field in the current legislation and standardization.

Keywords: Industry 4.0, Safety 4.0, Collaborative robot, Autonomous mobile robot, Exoskeleton, Risk assessment.

TH4I: 453
An Allostatic Load Measurement Model in Industrial Production Processes for Work-Related Stress Risk Assessment
Converso G.1, Martino T.2, Popolo V.3 and Toscano A.4
INCaMo, University of Naples Federico II, P.le Tecchio, 80 – Naples, Italy. E-mail: gianluigi.converso@unina.it, t.martino@unina.it, v.valentina.popolo@unina.it, p.procomedia@gmail.com

The current European regulatory framework for work health and safety has identified work-related stress as one of the risks to be considered and to be managed properly. In particular, the new legislation has implemented interest in the topic of “work-related stress”. The proposed paper aims to offer methodical principles and operational information about how to assess work-related stress risk. The study proceeds from the assumption that the danger is due to the human being. Consequently, that certain “event” depends on the combined disposition of the industrial process to which the subject is assigned and, above all by the intrinsically individual characteristics of the human resources be considered. The paper meant to be a contribution to the identification of methodologies applicable to the assessment of work-related stress in the workplaces for the identification of shared diagnostic paths in the field of psychosocial risk. In this context, the allostatic load of the subject under examination can measure, monitor, and observe the resilience or the risk in developing a mood disorder, depressive, anxiety, psychosomatic or somatometric (overt or potential) through vital signs and personality of the subject. It is a way to observe the consequences (stress) of factors that seem unrelated to each other and allows us to relate a series of behavioral profiles that are correlated by known pathological links with industrial processes, both in terms of probability of occurrence and consequences that is the severity of the impact.

The proposed procedure based on a semi-quantitative approach considers a four-dimensional domain that will allow the definition of a risk matrix based on an objective indicator of assessment risk. This model will tell us the tendency to develop a somatometric or psychosomatic as well as mood, depressive or anxiety disorder, relative to a specific activity and, considering the different hazards present in the company; it will be possible to reconstruct the overall level of risk held by the plant under examination.

Keywords: Work-related stress, Safety, Risk matrix, Psychometric test, Industrial processes.
Individual Situation Awareness to be Set Free from the Collaborative Robot
Nicole Berx1,2, Arie Adriaensen1,2, Wilm Decrée1,2,3 and Liliane Pintelon1,2,4
1Mechanical Engineering, KU Leuven, Belgium.
E-mail: nicole.berx@kuleuven.be, arie.adriaensen@kuleuven.be, wilm.decre@kuleuven.be, liliane.pintelon@kuleuven.be
2Core Lab ROB, Flanders Make@KU Leuven

Human Factors (HF) is the scientific discipline concerned with the understanding of interactions among human and other elements of a system with the aim to optimize system performance. One important concept within HF is Situation Awareness (SA). Since the early 1990s, the original models of individual SA have been complemented by additional models of shared and distributed SA. Although SA has already been the subject of investigation in many complex socio-technical systems, there is not a great body of scientific work on SA in relation to collaborative robots (cobots).

This paper explains and reviews the most relevant models and evolutions in SA thinking and examines to which extent the concept of SA, and more particularly Distributed Situation Awareness (DSA), can be applied to cobots. Individual models of cobot SA to detect human presence and predict future human activity from a cobot-centered perspective are technologically feasible and are currently applied in industrial applications. We defend that the SA within the cobot has to be of a higher order than the level of the individual human or technological agent, and needs to be ‘set free’ in order to not only be shared with human team members, but also to understand how SA is distributed throughout the system as a whole. This paper proposes to inform future cobot design with DSA analysis from a socio-technical perspective.

Keywords: Collaborative robot, Cobot, Human-robot collaboration, Situation awareness, Distributed situation awareness, Human factors.

An Innovative Approach for Ongoing Assessment of Critical Infrastructures’ Resilience based on a Nonfunctional Requirement Ecosystem
Weppe Alexandre1,2, Bonny-Dandrieux Aurélia1,2, Tixier Jérôme1,3, Chapurlat Vincent1,2,4 and Daclin Nicolas1,2
1Laboratoire des Sciences des Risques (LSR), IMT Mines Ales, Ales, France.
E-mail: alexandre.weppe@mines-ales.fr, aurelia.bony-dandrieux@mines-ales.fr, jerome.tixier@mines-ales.fr, vincent.chapurlat@mines-ales.fr, nicolas.daclin@mines-ales.fr
2Centre Génie Industriel, IMT Mines Albi, Albi, France.
E-mail: daouda.kamissoko@mines-albi.fr

Geopolitical context or climate change induced more and more disasters in the two last decades. Particularly, Critical Infrastructures (CI – e.g., water distribution, health care) that support the daily life of societies are impacted by these disasters. These CI are indeed essential. By their various interactions and links, they become more fragile when facing complex situations. For instance, a local event, occurring in a CI (e.g., an accident), can propagate throughout these interactions, impacting other CI, leading to a higher intensity and to a global impact. Classical risks analysis is limited in terms of global and dynamic vision of these CI, to manage these events efficiently and to recover to an acceptable functioning state for the end users. To this purpose, resilience is a useful concept, highlighted by numerous research works and organizations to characterize the best way a CI has to react to an undesirable event and avoid, if possible, its propagation. The purpose of this paper is to present the main principles of a methodology to assess and analyze resilience of a CI based on a multi views and systemic model formalized as a digital twin. This work is done in the frame of the project RESIST supported by the French research agency ANR (Résilience des infrastructures et systèmes interconnectés, 18-CE39-0018-05) to provide scenarios to test and evaluate the proposed methodology.

Keywords: Resilience, Non-functional requirement, -ility, Digital twin, Modeling, Simulation.
The notion of resilience is an interdisciplinary notion whose development and use has accelerated significantly over the past twenty years. Since its first use in materials science, ecology, and psychology, many disciplines have adopted it, particularly the sciences of safety and security. More recently, resilience is at the center of public policies for preventing and managing crises globally, nationally, and locally. The diversity of theoretical and empirical perspectives on resilience allows this concept to integrate: i) objects of different scales (from the technical object to the socio-ecological system); ii) different temporalities (before, during, and after the occurrence disturbance); iii) disturbances of various kinds (internal or external origin to the object, anticipated or unanticipated nature, positive (opportunity, innovation) or negative (accident, crisis, disaster)); iv) different perspectives concerning the disturbance (return to a normal state, robustness, management of the limit of the object’s control capacity). The design of definitions, models, methods, and indicators of resilience creates a potential for enhancing the safety and the security of objects. Nevertheless, the absence of a unique resilience culture creates confusion, ambiguities, misunderstandings, or contradictions between stakeholders.

The paper’s contribution is an interdisciplinary conceptual and methodological framework aiming at supporting resilience studies. John Dewey’s theory of inquiry and methodological literature about qualitative analysis ground the framework. The diversity of perspective on resilience guides the application of the four phases of the framework: 1) defining the resilience problem; 2) collecting data; 3) analyzing data, and 4) restituting results. The first part of the article presents the diversity and the complexity of resilience theories. The second part describes basis of the framework. The third part presents and illustrate the framework.

Keywords: Resilience, Transdisciplinary, Investigation.
A Comparative Analysis of Dynamic vs. Quasi-static Approaches for Resilience Assessment of a Bulk Power System Against Severe Wind Events

Farshid Faghihi\(^1\), Pierre Henneaux\(^1\), Pierre-Etienne Labeau\(^2\) and Mathaios Panteli\(^3\)

\(^1\) Bio, Electro, and Mechanical Systems Department, Université libre de Bruxelles, Belgium. E-mail: farshid.faghihi@ulb.ac.be, pierre.henneaux@ulb.ac.be

\(^2\) Service de Métrologie Nucléaire, Université libre de Bruxelles, Belgium. E-mail: pierre.etienne.labeau@ulb.ac.be

\(^3\) Department of Electrical and Computer Engineering, University of Cyprus, Cyprus. E-mail: mathaios.panteli@ucy.ac.cy

Severe weather-related events are one of the main causes of large-scale electric power outages worldwide. Although the probability of occurrence of these events is low, they are considered into the high-risk category due to their significant consequences. The intensity and frequency of these events have gradually increased in the last decades and are expected to keep increasing in the future due to climate change. To this end, power grid resilience is critical to reduce the risk and vulnerability to these events. In the context of resilience assessment, an important step is the simulation of the performance of power systems during these highly impactful events, which can be performed either by quasi-static or dynamic approaches. In this work, both approaches are applied for the assessment of the resilience of a bulk power system against severe wind events, and a comparative analysis of the results is provided. The main advantage of using dynamic simulation is to detect the outcomes of the system assets related to electrical instability during the events. Eurostag software is used to perform the dynamic simulation with a variable time step to increase the efficiency of the computational module. The results show that the analysis of the resilience of power system by a quasi-static approach leads to a considerable underestimation of the resilience metrics, mainly related to ignoring the intervention of protection systems during severe wind events.

Keywords: Power system, Wind events, Quasi-static approach, Dynamic simulation, Reliability, Resilience, Monte Carlo sampling.
The increased reliance on software in safety-critical systems requires an added emphasis on software verification and validation. To ensure, with sufficient confidence, compliance with functional safety requirements and avoidance of hazardous states, effectiveness and coverage of approaches to software verification and validation are crucial. This paper present an all-electric control system in subsea oil production that faces this challenge, a case study for our approach of verification and validation of safety-critical software using a digital twin.

Based on the literature survey, recommended ideas to utilize in our approach are presented in this paper.

Keywords: Software verification & validation, All-electric control system, Software development, Standards.

TH4K: 661 14:40 hrs

Locks for the use of IEC 61508 to ML Safety-Critical Applications and Possible Solutions

Albin Tarrisse\(^1\) and François Masse\(^2\)

\(^1\)QRII, French National Institute for Industrial Environment and Risk (Ineris), France.
E-mail: \(\text{albin.tarrisse@ineris.fr}\), \(\text{francois.masse@ineris.fr}\)

In the past few years, Artificial Intelligence (AI) and more precisely Machine Learning (ML), have been developing quickly and have found applications in a lot of various fields, including industry. The process industry and the use of machinery are critical because they represent a high risk for the surroundings, humans, goods and environment. To mitigate those risks, safety devices carrying out safety functions are used to monitor and control processes and machinery in real time. IEC 61508 which gives a framework to certify the Safety Integrity Level (SIL) of such systems is not suitable for complex algorithms like ML algorithms can be.

We will attempt in this paper to discuss the general concepts of the standard that hinder the development and assessment of safety devices using AI in the current state of knowledge. To the end, after describing the specificities of safety-critical systems and presenting the basic principles of a new safety lifecycle, a minimal level of transparency of AI and ML, this paper highlights the locks for the use of IEC 61508 and suggests some leverages, such as the use of a new safety lifecycle, a minimal level of transparency and explainability as well as the demonstration of robustness based on formal verification, testing and new metrics.

Disclaimer: AI is an area of research which is currently booming, the scientific knowledge is progressing rapidly, especially on the topics of safety assurance, testing, V&V, robustness, explainable AI (XAI). Thus, this article could not be exhaustive and represents our current state of knowledge on that matter. Some information in this paper have been taken from standards projects of the ISO/IEC JTC 1 SC42.

Keywords: Functional safety, Software reliability, Process industry, Machinery, Machine learning, Artificial intelligence.
Review of Reliability Modelling Methods for Safety-critical Software in Nuclear Power Plant

Chao Guoa, Shuqiao Zhoub, Fan Chenc and Xiaojin Huangd

Institute of Nuclear and New Energy Technology of Tsinghua University, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Beijing, China.
E-mail: aguochao@tsinghua.edu.cn, bzhousq@tsinghua.edu.cn, cchenfan@tsinghua.edu.cn, dhuangxj@tsinghua.edu.cn

Safety-critical software plays an important role for the safe operation of a nuclear power plant (NPP). However, it also brings challenges both to the reliability analysis of the safety system and to the Probabilistic Safety Assessment of the NPPs. The reliability analysis of safety-critical software is also expected by the nuclear regulation agencies and the software development groups for test evaluation and optimization. It is essential to carry out reliability modelling research on nuclear safety-critical software. The detected faults during software test process are regarded to have close connection with the software reliability and there have been hundreds of test-based software reliability models. Software reliability growth models are very commonly used in software reliability evaluation. To incorporate more information and provide more accurate analysis, modelling software fault detection and correction processes has attracted widespread research attention recently. This paper reviews the research progress of software reliability in the field of nuclear power in recent years. Combining with the characteristics of safety-critical software, this article makes a detailed analysis of software reliability growth model which helps to analyse the reliability of safety-critical software.

Keywords: Safety-critical software, Reliability modelling, Software severity, Critical fault, Software reliability growth model, Nuclear power plant.
Author Index

A
A., Meleddu 204
A., Toscano 255
Abdel-Elad 126
Abbas, M. 122
Abdessalem, Anis Ben 105
Abdel-Mageed, Younes 83
Abreu, Danilo Taberapa Martins Pereira de 247
Abreu, Roberto Vicente Silva de 254
Acosta, Jelvys Bermúdez 167
Adjed, Faouzi 237
Adriaensen, Arie 256
Adriana, Pacifico 69
Adrien, Hirvoas 59
Aghli, Nima 68
Agnello, Patrizia 114
Agrell, Christian 247
Ahmed, Ibrahim 190
Ahmet Omurtag 9
Ahn, Byeongmun 206
Ahuja, M. K. 258
Ai, Hsueh-Fang 24
Aichele, Diego 195
Aikens, Olga 112
Alessandra, Ferraro 141
Alessandro, Quattrini 129
Alexandre, Weppe 256
Alfariz, Muhammad Gibran 144
Alexandra Fernandes 9
Ale, Ben J. M. 32
Ambros, Peter 49
Amaral, Ibrahima 223
Bárcena, Lucía Bautista 23
Bérenguer, Chistophe 239
Bastidas-Arteaga, Emilio 211
Bastidas-Arteaga, Emilio 215
Bastos, Mathieu Bastos de Almeida 31
Battilani, Marco 207
Beaurepaire, F. 248
Beaurepaire, Pierre 126
Beaurepaire, Pierre 217
Becker, Michael 249
Belzil, Mehdi 238
Bel, Andre 150
Belliello, Marjorie Maria 226
Bellos, Evangelos 112
Belouas, Amel 156
Belouas, Omar Gutiérrez 115
Bennaceur, Walid 66, 102
Benz, Achim 36
Bell, Emma 134
Bergser, Christoph 94
Bergler, Matthias 182
Blanco, M. 93
Benedetti, P. 258
Benedetti, Fabio 176
Benedetti, Fabio 176
Berrett, Sylvain 26
Berthele, Bernad 35, 36, 120, 151, 207
Bers, Nicolas 256
Berzins, Guntars 213
Bex, C. 243
Beugue, Julie 154
Bezerra, Jesus 138
Bifet, Albert 153
Bigaud, David 152, 164
Bigot, Jérôme 201
Bisio, Rossella 57
Bisrut, Elisabeth 246
Bittner, Tim 92
Bjerklund, Ludvig 259

Andrea, Quattarini 129
Andreev, John 16, 17, 178
Amarein, Olga 112
Amjus, Miguel F. 77
Annigheilur, Bjorn 63
Amoddi, Silvia Maria 222
Ansari, Younus 112
Anthony, Legendre 101
Antoine, Théophile 173
Antonio de Paula Pedroso 3
Antonson, Stian 127, 219
Arazjo, Natasha Nuno 63
Araguetti, Thomas Gonçalves 48
Aranda, Oscar 53, 99, 163
Arbaci, Remi 222
Argi, Axel 249
Arnold, Marco 207
Aronno, Emanuele 222
Arnanphal, Srinivasan 130
Aquetel, Tore 48
Askar, Kamy 124
Audry, Jean-François 122
Audrey, Pierre 133
Audrey, Rony-Davidhuez 256
Author, First 16
Aven, Tore 16
Azevedo, Rafael Valença 167
Aytar Khaled 9

B
BA, Ibrahima 223
Bçaena, Lucía Bautista 23
Bèrenguere, Christophe 129
Bèrenguere, Christophe 28, 180, 239
Bécatraire, Ola 102, 143
Bédos, Floï 199
Bendik, Robert 154
Bensaid, Smail 193, 219
Baltes, Nora 202
Baltschoukos, Gheorghe 115
Baltschoukos, Gheorghe 115
Baraldi, Piero 190
Baraschino, Roberto 116
Barreto, Hervé du 92
 Barnett, Nicholas 92
Bartha, Julián 60, 239

Barrada, Joaquín Figueras 110
Barrada, Joaquín Figueras 161
Baruah, Mihir 135
Barros, Arne 150, 227
Barthelemy, Laurent 60
Bass, Akash 95
Basirem, Erwan 105
Baskcomb, Stuart 63
Bast, Khaled 173
Bastien, Rob 138
Bastidas-Arteaga, Emilio 111
Bastidas-Arteaga, Emilio 215
Bastos, Mathieu Bastos de Almeida 31
Batteux, Michel 65, 66, 76, 102
Baumann, Axel 151
Bautista, Lucía 225
Bayma, Alaise 202, 218
Beaurepaire, F. 248
Beaurepaire, Pierre 126
Beaurepaire, Pierre 217
Becker, Michael 249
Behzad, Mehdi 238
Bell, Andre 150
Bell, Emma 134
Bellos, Evangelos 112
Belouas, Amel 156
Bennaceur, Walid 66, 102
Benz, Achim 36
Bèrenguere, Christophe 94
Bergler, Matthias 182
Bergström, N. 93
Bernabi, P. 258
Bermudini, Fabio 176
Bersani, Federico 21
Berrett, Sylvain 26
Berthele, Bernad 35, 36, 120, 151, 207
Bers, Nicolas 256
Berzins, Guntars 213
Bex, C. 243
Beugue, Julie 154
Bezerra, Jesus 138
Bifet, Albert 153
Bigaud, David 152, 164
Bigot, Jérôme 201
Bisio, Rossella 57
Bisrut, Elisabeth 246
Bittner, Tim 92
Bjerklund, Ludvig 259
<table>
<thead>
<tr>
<th>Author</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dai, Chao</td>
<td>53</td>
</tr>
<tr>
<td>Dai, Wei</td>
<td>104</td>
</tr>
<tr>
<td>Dang, Vinh N.</td>
<td>56, 172</td>
</tr>
<tr>
<td>Dantan, Jean-Yves</td>
<td>125</td>
</tr>
<tr>
<td>Daouda, Kamissoko</td>
<td>256</td>
</tr>
<tr>
<td>Das, Oisik</td>
<td>98</td>
</tr>
<tr>
<td>Dautreme, Emilie</td>
<td>155</td>
</tr>
<tr>
<td>Davia da Fonseca Vieira Junior Marinato</td>
<td>3</td>
</tr>
<tr>
<td>Dazer, Martin</td>
<td>36, 120, 207</td>
</tr>
<tr>
<td>Decarli, Luca</td>
<td>168, 243</td>
</tr>
<tr>
<td>Decocq, Bertrand</td>
<td>149, 227</td>
</tr>
<tr>
<td>Decré, Willy</td>
<td>256</td>
</tr>
<tr>
<td>Dedecker, Fabian</td>
<td>190</td>
</tr>
<tr>
<td>Deines, Evgenia</td>
<td>139</td>
</tr>
<tr>
<td>Delavernhe, Florian</td>
<td>34</td>
</tr>
<tr>
<td>Deligianni, Aggeliki</td>
<td>112</td>
</tr>
<tr>
<td>Delmas, J.-F.</td>
<td>252</td>
</tr>
<tr>
<td>Delmas, Kevin</td>
<td>65</td>
</tr>
<tr>
<td>Demichelis, Micaela</td>
<td>15, 167, 219</td>
</tr>
<tr>
<td>Derudi, Marco</td>
<td>70</td>
</tr>
<tr>
<td>Devaraj, Lokesh</td>
<td>136</td>
</tr>
<tr>
<td>Dersin, Pierre</td>
<td>87</td>
</tr>
<tr>
<td>Derudi, Marco</td>
<td>70</td>
</tr>
<tr>
<td>Devaraj, Lokesh</td>
<td>136</td>
</tr>
<tr>
<td>Dersin, Pierre</td>
<td>87</td>
</tr>
<tr>
<td>Decarli, Luca</td>
<td>168, 243</td>
</tr>
<tr>
<td>Decocq, Bertrand</td>
<td>149, 227</td>
</tr>
<tr>
<td>Decré, Willy</td>
<td>256</td>
</tr>
<tr>
<td>Dedecker, Fabian</td>
<td>190</td>
</tr>
<tr>
<td>Deines, Evgenia</td>
<td>139</td>
</tr>
<tr>
<td>Delavernhe, Florian</td>
<td>34</td>
</tr>
<tr>
<td>Deligianni, Aggeliki</td>
<td>112</td>
</tr>
<tr>
<td>Delmas, J.-F.</td>
<td>252</td>
</tr>
<tr>
<td>Delmas, Kevin</td>
<td>65</td>
</tr>
<tr>
<td>Demichelis, Micaela</td>
<td>15, 167, 219</td>
</tr>
<tr>
<td>Derudi, Marco</td>
<td>70</td>
</tr>
<tr>
<td>Devaraj, Lokesh</td>
<td>136</td>
</tr>
<tr>
<td>Dersin, Pierre</td>
<td>87</td>
</tr>
<tr>
<td>Derudi, Marco</td>
<td>70</td>
</tr>
<tr>
<td>Devaraj, Lokesh</td>
<td>136</td>
</tr>
<tr>
<td>Dersin, Pierre</td>
<td>87</td>
</tr>
</tbody>
</table>
Author Index

Groni, Maria Grazia 140
Goge, Philippe 134
Gonzalez-Libreros, Jaime H. 81
Gotcheva, Nadzara 233
Gould, Kenneth Pettersen 234
Grall-Maes, Edith 217
Gran, Lars 160
Gray, Ander 35
Gray, Nicholas 163
Greco, Andrea 161
Greg Hilliard 9
Guern, Christelle 34
Guanini, Maria 76
Haas, John David 252
Hansen, Anne Elise Sten 126
Hansen, Geir Kjetil 41
Hardy, C. 252
Hasslov, Carina 144, 197
Hassler, Henrik 99
Haug, Inga S. 159
Haug, Inga Sofie 159
Haugen, Stein 55
Haugen, Odd Ivar 247
Hayes, Jan 142
He, Shilie 120
He, Yan 235
Hétensleker, Christophe 148
Hektor, Erik Andreas 247
Henciken, Kai 23
Henriques, Pierre 258
Hew, Gyomyoung 174, 235
Hernández-Montes 244
Hermant, Isabelle 230, 257
Herremans, Jeffrey W. 51
Herzog, Thomas 120
Heikens, Tom 51
Hincz, Marcus 77, 120, 147, 187
Hirsenzane 119
Hin, Minzhang 34
Hoang, Anh Dang 208
Hofland, Bas 183
Holm, Siv Marianne 126
Holte, E. A. 88
Hombi, Dániel 97
Hongmin Zhu 7
Hori, Kei 203
Horreis, Timo F. 180
Horreis, Timo Frederik 165
Hoseyni, Seyed Mojtaba 201
Housieun, Seyed Mojtaba 201
Houseimprov, Fatemeh 218
Ipertut, Lina El 15
Ishikawa, Yoshiharu 200
Ito, Masahito 201
Iwasaki, Yoichi 9
Itoh, Masahiro 201
Ivanov, Oskar Larsson 97
Iversen, Tone 96

J

J., Ferrino 204
Jáuregi, Hugo da Costa Ramberg 61
Jautz, Martin G. 154
Jackson, Andrew 16
Jaggers, Sigurd R. 41
Jae, Moosung 253
Jalezzadeh, Sepideh 70
Jalón 244
Jamaoui, H. 16
Jarl, Håkan 87
Jean-Marc, Jérôme 125
Jean-Marc, Lenny 39
Jean-Michel, Heurtier 60
Jean-Yves Brandelet 4
Jennsen, Gunnar Dohnbell 159
Ji, Yanpeng 154, 233
Ji, Xinpeng 64
Jia, Chuanzhou 200, 216
Jia, Jicheng 44
Jia, Jingyun 68
Jia, Xiang 91
Jia, Xinyu 248
Jiang, Chuahao 164
Jiang, Lei 237
Jiang, Yichun 250
Jimenez-Roa, Lisandro A. 51
Jin, Kyungho 170
Jin, Youngho 206
Jin, Youngho 78
Jin, Xinxue 78
Jin, Xinyong 80
Johannessen, Stig A. 41
Johansson, Jonas 97, 220
Johansson, S. O. 88
Johnson, Stig O. 36
Jonas Rennemo Vaag 9
Jonkman, S. N. 183
Jørgen, Stein Haugdal 210
Jørgens, Lisandro A. 51
Jordsand, Stein 183
Jørgensen, Lisandro A. 51
Jordal, Hans 170
Jørstad, Marius 206
Jørgensen, Lisandro A. 51
Jørstad, Marius 206
Author Index

José, Sanchez-Torres 101
Jr., Manoel Feliciano da Silva 167
Juad, Nathali 29
Jue, Drust 101
Julier, Nathalie 124
Junier, Valeriu Luciu Jurla 223
Jusovska, Joschen 151

K
König, Sandra 158
Kopke, Cornelia 234
Kaarstad, Magnhild 168, 169
Kaczorowski, Piotr 121
Kadrzinski, Miłosz 225
Kain, Tobias 165, 180, 208
Kaloudi, Nektaria 30
Kaminska, Renata 25
Kanak, Alper 151
Kang, Jung Sung 25
Kanjo, Taro 158
Kopustinskas, Vytais 157
Konevic, Jozaf 198
Koteck, Lukas 234
Kotek, Luboš 234
Koromila, Ioanna 112
Kostolny, Jozef 198
Kremer, Alexander 35
Kremspöltler, Fredy 53, 99
Krive, Aaron 51
Krooja, Jirí 234
Kubov, Kateřina 62
Kumar, Uday 87
Kumar, Siddharth 122, 198
Kurita, Yoko 88
Kusayev, Mirosław 122, 198
Kyrkakis, Milos 172

L
L., María 244
López-Campos, Mónica 220
Labora, Léandre 230, 237
Labuca, Pierre-Étienne 258
Lafras, Frédéric 136
Lagouue, Radoslaw 215
Lai, Ignat 70
Lala, Stéphane 26
Lamy, Pascal 193
Landa, Luca 73, 74, 75, 176
Lanzalume, Robert 250
Larrand, Thomas de 251
Lars Hurlen 9
Lassalle, Julie 33
Latté, Mohd Azman Abdul 105
Latzenhofer, Martin 158
Lau, Damascus 141
Lazar, Cecilia 131
Lazrek, Rida 240
Le- Nguyen, Minh-huu 153
Leclerc, Cyril 201
Leedda, G. 71
Leclerc, Patrick 34
Lee, Jackson 108
Lee, Jenny 92
Lee, Jin Woong 103
Lee, Junyoung 32
Lee, Sang Hoon 62
Lee, Seung Jae 103
Lee, Seungjun 24, 25
Lee, Tae Hwan 212
Letkovska, Gabriela 197
Lei, Yang 100
Leimeister, Manake 59
Letko, Armando 221
Leukin, Alexei 151
Lemenand, Thierry 240
Lemone, Benoit 150
Lemone, David 246
Leone, Pasquale 25 176
Leppäaho, Oskari 236
Leprévot, Philippe 145
Lessano, Sergio 95
Leva, Chiara 193
Leva, Maria Chiara 13, 202
Levashevnko, Vitaly 122, 198
Levasseur, Baptiste 26
Levrat, Eric 193
Leverich, Horst 133, 190
Lie, Børsen 229
Li, Davis 75
Li, Jun 63
Li, Jinglei 63
Li, Jingyu 30, 165
Li, Qi 40
Li, Pan 64
Li, Rui 227
Li, Tao 78
Li, Wanshan 199
Li, Xiao-Gang 13
Li, Yan-Fu 199, 200, 216
Li, Yashan 81
Li, Zhongjun 44
Liang, Yuming 19, 53, 108
Liang, Zhenglin 199
Lichtsteiner, Daniel 39, 40, 166
Lim, Dohyun 206
Lima, Gabriel Alves da Costa 231
Lima, da Costa 232
Lin, Yuan 44
Linacisoro, Gala 237
Lind, Morten 106, 119
Lindblom, Catharina 107
Lindskog, S. 112
Lindström, Josef 220
Liu, J. D. 213
Luo, L. 185
Luo, L. 195
Luo, L. 181
Luo, Juan 56, 167
Liu, Guijie 124
Liu, Houxiang 64, 154, 233, 244
Liu, Jie 170
Liu, Weiqi 26
Liu, Xingheng 10
Liu, Y. 122
Liu, Yu 245
Liu, Yujie 140
Lmoussaoui, H. 11
Lohne, Hans Petter 54
Lonchampt, Jérôme 35
Lonchampt, Jerome 155
Lonergan, Katherine Emma 46
Longo, Luca 202
Lopes, Rodrigo 231
Lopez, Jose Luis 191
Lorenz, Albert 127
Lucas, Alloin 59
Luciano, Di Donato 141
Lundteigen, Mary Ann 55, 212, 259
Luo, Hao 146
Luca, Landi 141
Luca, Allain 16
Luca, Pietro 127
Luciano, IA Dinato 141
Ludwig, Mary Ann 55, 212, 259
Luo, Hao 146
Lu, Xingheng 10
Luan, Xingpeng 35
Lyu, Hong-Guang 85

M
MIET, EUR ING Ben J. Easton MSc CEng 56
Mohr, Stella 139
Moller, Julian-Steffen 208
Moller, Tim Oliver 139
Ma, Cheyan 27
Ma, Jie 117
Ma, Li 244
MacEachern, Peter 185
Macedo, July 195
Madonna, Marianna 255
Magalhães, Marcus Vinicius de Campos 167
Maggiore, Pasco 113, 190
Magno, Alberto 232
Maitena, Renan G. 174
Maiu, Francesco Di 166, 201, 243
Maison, Caio Bezerra Souo 58
Maison, Caio Souo 167
Maledad, Stein 209
Malinowski, Jaroslaw 52, 242
Manuel 244
Marbukh, Vladimir 89, 90
Marcelo Póvoas 3
Marchionni, Giovanna 127
Marciano, Filippo 211
Mazzini, Cosetta 173
Maurer, Rémy 153
Maurin, J. 82
Marzocchi, Marco 176
Mastrangeli, Leonardo 175
Mazzulli, Salvatore 57
Massen, Benoit 60
Matsida, Christos 98
Matos, José Campos e 81
Maturana, Marcos Coelho 61
Maya, Beatriz Navas De 56
Maxeiner, Michael 173
Mbhimi, Guy-de-Patience 251
McDermid, John 86
McGeorge, Dag 247
Medici, Stefano 190
Medina, Kevin 21
Meierbörn, Marcel Aguirre 208
Mei, Maria Antonietta 219
Mei, Maria Antonietta De Andrade 132, 184, 226
Mele, Agostino 11, 52
Meili, Ludwig 205
Meillling, Gregor 183
Melloni, Riccardo 75
Menad, Elena Spina 29
Mendesával, Rafael 251
Mendoza, Jorge E. 34
Mendesával-Lugo, Miguel Angel 182
Menezes, Eully Joao Novais 167
Meng, Huixing 71, 160
Meng, Liping 120
Meng, Xiang-Kuan 85
Mergel, Myriam 142
Mera, Maria Valentina Clavijo 161
Meren, Mei 150
Meren, Mei van der 247
Meroni, Francesco 76
Meren, Peter 170
Mihaid, Fad 65
Min, Huilang 119
Michaud, Lukyanovich 90
Michail, Maris 152
Michail, Marinia Yorgova 152
Michail, Miguel Angel De Carvalho 226
Michal, Gabriel 38, 86
Michel-Ponnelle, Sylvie 60
Midelfjord, Alise Daniell 64
Mielo, Gregor 225
Miguel, Munoz Zuniga 59
Mihaila Mitica 6
Miller, Natalie 151
Milan, Leonardo 163
Mitica, Mihaela 12
Mio,Cuadra 108
Miozzi, Ralf 225
Modarres, Mohammad 20, 51, 95
Moe, Dagfinn 127
Moesdien, Heinrich 74
Moghanlou, Lida Naseh 201
Mohamed Jmel 7
Mokosana, Antonella 72
Monache, Andrea Delle 127
Monacci, Luigi 254, 255
Monteil, Alexandre 60
Montemolli, Francesco 18
Monvoisin, Mathilde 145
Morais, Carlos Henrique Bittencourt 82, 161
Morais, Caroline 249
More, Pablo del 179
Morel, Alain 29
More, Tango 125
Moret, Claudia 14
Moscatello, A. 71
Mosleh, Ali 174
Moura, Fernanda Marques de 253
Moura, M. C. 213
Moura, Márcio José das Chagas 58, 167
Moura, Márcio das Chagas 195
Moura, Maria 181
Moura, Marcio C. 181
<table>
<thead>
<tr>
<th>Name</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moura, Raphael</td>
<td>249</td>
</tr>
<tr>
<td>Mouroulas, Andreas</td>
<td>80</td>
</tr>
<tr>
<td>Mourou, N.</td>
<td>119</td>
</tr>
<tr>
<td>Moutinho, Bruno de Figueiredo</td>
<td>152</td>
</tr>
<tr>
<td>Mu, Hua</td>
<td>198</td>
</tr>
<tr>
<td>Muirhead, Robert</td>
<td>63</td>
</tr>
<tr>
<td>Mukherjee, Sayanti</td>
<td>228</td>
</tr>
<tr>
<td>Mulato, Stéphane</td>
<td>251</td>
</tr>
<tr>
<td>Muñoz, Salma</td>
<td>219</td>
</tr>
<tr>
<td>Murad, Carlos Alberto</td>
<td>226</td>
</tr>
<tr>
<td>Muratore, Antonino</td>
<td>175, 176</td>
</tr>
<tr>
<td>Myhre, Bjørn</td>
<td>147</td>
</tr>
<tr>
<td>Myrskov, Tore</td>
<td>247</td>
</tr>
<tr>
<td>Myklebust, T.</td>
<td>112</td>
</tr>
<tr>
<td>Myklebust, Thor</td>
<td>41, 154, 159</td>
</tr>
<tr>
<td>Myrtveit, Ingunn</td>
<td>86</td>
</tr>
<tr>
<td>Nápoles, Oswaldo</td>
<td>230</td>
</tr>
<tr>
<td>Naderpajouh, Nader</td>
<td>151</td>
</tr>
<tr>
<td>Nagasuki, Luis Augusto</td>
<td>232</td>
</tr>
<tr>
<td>Naja, Beaz</td>
<td>50</td>
</tr>
<tr>
<td>Napolio, Oswaldo</td>
<td>183</td>
</tr>
<tr>
<td>Nardo, Mario</td>
<td>255</td>
</tr>
<tr>
<td>Narimanzadeh, Armin</td>
<td>161</td>
</tr>
<tr>
<td>Nasat, Kathleen</td>
<td>97</td>
</tr>
<tr>
<td>Natasha, Vincenzo</td>
<td>175, 176</td>
</tr>
<tr>
<td>Nattel, R.</td>
<td>227</td>
</tr>
<tr>
<td>Navarro, J.</td>
<td>243</td>
</tr>
<tr>
<td>Nebbia, Rebecca</td>
<td>79</td>
</tr>
<tr>
<td>Nechiwal, Constantn</td>
<td>213</td>
</tr>
<tr>
<td>Nejad, Vida Kostohari</td>
<td>22</td>
</tr>
<tr>
<td>Ner, Alessandro</td>
<td>158</td>
</tr>
<tr>
<td>Nezan, Kartikian</td>
<td>69</td>
</tr>
<tr>
<td>Neto, Waldomiro</td>
<td>189</td>
</tr>
<tr>
<td>Netto, Adhebral</td>
<td>226</td>
</tr>
<tr>
<td>Neunhauser, Gerhard</td>
<td>197</td>
</tr>
<tr>
<td>Neuppast, Franz-Georg</td>
<td>146</td>
</tr>
<tr>
<td>Nguyen, Khadi T. F</td>
<td>21</td>
</tr>
<tr>
<td>Nguyen, Van-Thai</td>
<td>155</td>
</tr>
<tr>
<td>Nicholson, Mark</td>
<td>136</td>
</tr>
<tr>
<td>Nicolas, Declin</td>
<td>256</td>
</tr>
<tr>
<td>Nicolas, Garin</td>
<td>59</td>
</tr>
<tr>
<td>Niemi, Arto</td>
<td>142</td>
</tr>
<tr>
<td>Nikulin, Christopher</td>
<td>163</td>
</tr>
<tr>
<td>Niu, Ru</td>
<td>42, 88, 100</td>
</tr>
<tr>
<td>Novickzou, Zoe</td>
<td>112</td>
</tr>
<tr>
<td>Nocera, Fabrizio</td>
<td>29</td>
</tr>
<tr>
<td>Nordahl, Håvard</td>
<td>147</td>
</tr>
<tr>
<td>Nova, Silva J.</td>
<td>81</td>
</tr>
<tr>
<td>Novobilsky, Petr</td>
<td>258</td>
</tr>
<tr>
<td>Nowaczyk, Sławomir</td>
<td>179</td>
</tr>
<tr>
<td>Ntaremes, Paragostis</td>
<td>80</td>
</tr>
<tr>
<td>Nystad, Espen</td>
<td>22</td>
</tr>
<tr>
<td>Ochoa, Karla Saldana</td>
<td>45</td>
</tr>
<tr>
<td>Ogliuice, David</td>
<td>185</td>
</tr>
<tr>
<td>Okstad, Eivind H.</td>
<td>154</td>
</tr>
<tr>
<td>Onions, Tor</td>
<td>112</td>
</tr>
<tr>
<td>Oosterhout, Jeroen van</td>
<td>139</td>
</tr>
<tr>
<td>Orandi, Abbas</td>
<td>237</td>
</tr>
<tr>
<td>orchard, Marcos</td>
<td>21</td>
</tr>
<tr>
<td>Orsi, Sebastian</td>
<td>45</td>
</tr>
<tr>
<td>Osmani, Khale</td>
<td>240</td>
</tr>
<tr>
<td>Osparov, Mavrym</td>
<td>198</td>
</tr>
<tr>
<td>Otto-Flipo, Eduardo</td>
<td>211</td>
</tr>
<tr>
<td>Otun, Tahmara</td>
<td>17</td>
</tr>
<tr>
<td>Ouattara, Ayman</td>
<td>181</td>
</tr>
<tr>
<td>Ouadbahra, Amea</td>
<td>39</td>
</tr>
<tr>
<td>Ouayang, Zhicheng</td>
<td>229</td>
</tr>
<tr>
<td>Ochoa, Manuelo</td>
<td>31, 48, 129</td>
</tr>
<tr>
<td>Padelli, Luca</td>
<td>175</td>
</tr>
<tr>
<td>Paglia, Christopher</td>
<td>173</td>
</tr>
<tr>
<td>Patrini, Nicola</td>
<td>70</td>
</tr>
<tr>
<td>Pan, Xing</td>
<td>154, 233</td>
</tr>
<tr>
<td>Pantek, Mathijs</td>
<td>164</td>
</tr>
<tr>
<td>Papadimitriou, Costas</td>
<td>248</td>
</tr>
<tr>
<td>Papaelas, Mayorkenos</td>
<td>223</td>
</tr>
<tr>
<td>Papagianopoulos, Nikos</td>
<td>234</td>
</tr>
<tr>
<td>Paro CLOCK, Jason</td>
<td>161</td>
</tr>
<tr>
<td>Paribakht, Tararoom</td>
<td>174</td>
</tr>
<tr>
<td>Park, Jinhyun</td>
<td>62, 170, 203</td>
</tr>
<tr>
<td>Park, Minjung</td>
<td>93</td>
</tr>
<tr>
<td>Parsaies, Christian</td>
<td>10</td>
</tr>
<tr>
<td>Parisot, Benoit</td>
<td>98</td>
</tr>
<tr>
<td>Pasquagayo, Lisbet</td>
<td>95</td>
</tr>
<tr>
<td>Pascham, Sepiheh</td>
<td>179</td>
</tr>
<tr>
<td>Patelli, Edouardo</td>
<td>35, 47, 156, 249</td>
</tr>
<tr>
<td>Patrick, Pamphile</td>
<td>17</td>
</tr>
<tr>
<td>Patrinos, Luigi</td>
<td>75</td>
</tr>
<tr>
<td>Patracca, Mario</td>
<td>79</td>
</tr>
<tr>
<td>Pastizke, Friedbert</td>
<td>187</td>
</tr>
<tr>
<td>Peach, Rina</td>
<td>22</td>
</tr>
<tr>
<td>Peclt, Michael</td>
<td>179</td>
</tr>
<tr>
<td>Pedersen, Frank Bo re 247</td>
<td></td>
</tr>
<tr>
<td>Pedersen, Priben Termpres</td>
<td>48</td>
</tr>
<tr>
<td>Pedersen, Tom Ivan</td>
<td>99, 125</td>
</tr>
<tr>
<td>Pedrosa, Antonio de Paula</td>
<td>31, 48</td>
</tr>
<tr>
<td>Pellecchia, Frederic</td>
<td>237</td>
</tr>
<tr>
<td>Peng, Ching-Yu</td>
<td>24</td>
</tr>
<tr>
<td>Pengbo Zhang</td>
<td>8</td>
</tr>
<tr>
<td>Pentimalli, Salvatore</td>
<td>79</td>
</tr>
<tr>
<td>Papper, Nick</td>
<td>18</td>
</tr>
<tr>
<td>Pera, Fabio</td>
<td>73, 74, 140</td>
</tr>
<tr>
<td>Perera, J. C.</td>
<td>214</td>
</tr>
<tr>
<td>Perera, Jose Cristiano</td>
<td>31, 48, 129</td>
</tr>
<tr>
<td>Perl, Romain</td>
<td>132, 152</td>
</tr>
<tr>
<td>Perinetti, Sara</td>
<td>13</td>
</tr>
<tr>
<td>Perez, Cristina De</td>
<td>145</td>
</tr>
<tr>
<td>Petersen, S.</td>
<td>41</td>
</tr>
<tr>
<td>Petersen, Steig</td>
<td>147</td>
</tr>
<tr>
<td>Petersen, Solveig</td>
<td>212</td>
</tr>
<tr>
<td>Philip Breedon</td>
<td>9</td>
</tr>
<tr>
<td>Philippe, Caron</td>
<td>101</td>
</tr>
<tr>
<td>Piccinelli, Roberta</td>
<td>162</td>
</tr>
<tr>
<td>Pieratt, Lamberti</td>
<td>134</td>
</tr>
<tr>
<td>Pietruch-Urbanski, Kataryna</td>
<td>186</td>
</tr>
<tr>
<td>Pilone, Eleonora</td>
<td>15, 219</td>
</tr>
<tr>
<td>Pinelli, Jean-Paul</td>
<td>68, 247</td>
</tr>
<tr>
<td>Pintelon, Liliane</td>
<td>256</td>
</tr>
<tr>
<td>Pira, Enrico</td>
<td>79</td>
</tr>
<tr>
<td>Pirenia, Mariachiara</td>
<td>221</td>
</tr>
<tr>
<td>Pirone, Annalisa</td>
<td>222</td>
</tr>
<tr>
<td>Piselli, A.</td>
<td>71</td>
</tr>
<tr>
<td>Plassort, Dany</td>
<td>135</td>
</tr>
<tr>
<td>Plett, Restand Moutou</td>
<td>111</td>
</tr>
<tr>
<td>Pizzolato, N.</td>
<td>130</td>
</tr>
<tr>
<td>Platip, Agepinos N.</td>
<td>253</td>
</tr>
<tr>
<td>Poddohilini, Luca</td>
<td>56</td>
</tr>
<tr>
<td>Poliotti, Mauro</td>
<td>151</td>
</tr>
<tr>
<td>Polte, M.</td>
<td>93</td>
</tr>
<tr>
<td>Ponchet-Deurup, Amelie</td>
<td>34</td>
</tr>
<tr>
<td>Ponzi, Marco</td>
<td>127</td>
</tr>
<tr>
<td>Pontiggia, Cristian Colombini Marco</td>
<td>31</td>
</tr>
<tr>
<td>Porrath, Thomas</td>
<td>169</td>
</tr>
<tr>
<td>Postiglione, F.</td>
<td>227</td>
</tr>
<tr>
<td>Pozzi, Simone</td>
<td>56</td>
</tr>
<tr>
<td>Prebradchyi, Jan</td>
<td>192</td>
</tr>
<tr>
<td>Presto, Emosial Del</td>
<td>74, 140</td>
</tr>
<tr>
<td>Przechickova, Dana</td>
<td>192</td>
</tr>
<tr>
<td>Przechucka, Dana</td>
<td>11, 12, 110, 132, 166, 238</td>
</tr>
<tr>
<td>Prosvirnova, Tatiana</td>
<td>66, 102</td>
</tr>
<tr>
<td>Pulcini, Giangiulio</td>
<td>122</td>
</tr>
<tr>
<td>Pull, Alicia</td>
<td>72, 73</td>
</tr>
<tr>
<td>Qiao, Yajing</td>
<td>26</td>
</tr>
<tr>
<td>Qin, Taijun</td>
<td>504</td>
</tr>
<tr>
<td>Quadri, Fausta Delli</td>
<td>83</td>
</tr>
<tr>
<td>Quattrocchi, Gaetano</td>
<td>113</td>
</tr>
<tr>
<td>Rotting, Jens</td>
<td>207</td>
</tr>
<tr>
<td>Author</td>
<td>Page(s)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Raïssi, Tarek</td>
<td>109</td>
</tr>
<tr>
<td>Raballand, Nicolas</td>
<td>26</td>
</tr>
<tr>
<td>Rabhi, Mohamed</td>
<td>105</td>
</tr>
<tr>
<td>Radetzky, Max</td>
<td>194</td>
</tr>
<tr>
<td>Raed, Nader</td>
<td>119</td>
</tr>
<tr>
<td>Ramadan, Mohamad</td>
<td>240</td>
</tr>
<tr>
<td>Ramdani, Mohammed</td>
<td>136</td>
</tr>
<tr>
<td>Ramirez-Marengo, Clementina</td>
<td>56</td>
</tr>
<tr>
<td>Ramos, Francisco S.</td>
<td>181</td>
</tr>
<tr>
<td>Ramos, Marilia A.</td>
<td>85, 174, 181</td>
</tr>
<tr>
<td>Ramos, Plinio Marcio de Silva</td>
<td>58</td>
</tr>
<tr>
<td>Ramos, Caroline</td>
<td>135</td>
</tr>
<tr>
<td>Ramo, Pierre-Alain</td>
<td>125</td>
</tr>
<tr>
<td>Randrup-Thomsen, Søren</td>
<td>48</td>
</tr>
<tr>
<td>Ranum, Stine A.</td>
<td>41</td>
</tr>
<tr>
<td>Rauffet, Philippe</td>
<td>135</td>
</tr>
<tr>
<td>Rauch, Dominik</td>
<td>49</td>
</tr>
<tr>
<td>Rastegyari, Elna-Maria</td>
<td>211</td>
</tr>
<tr>
<td>Retes, Mark Fauvel</td>
<td>179</td>
</tr>
<tr>
<td>Renard, Yves</td>
<td>103</td>
</tr>
<tr>
<td>Rève, Matthew</td>
<td>131</td>
</tr>
<tr>
<td>Rey, Valentine</td>
<td>205</td>
</tr>
<tr>
<td>Reng, Mehdi</td>
<td>237</td>
</tr>
<tr>
<td>Rishi, Hassan</td>
<td>152</td>
</tr>
<tr>
<td>Ribaudou, Ammara</td>
<td>127</td>
</tr>
<tr>
<td>Ribech, Miguel</td>
<td>39</td>
</tr>
<tr>
<td>Richard, Philippe</td>
<td>173</td>
</tr>
<tr>
<td>Rigaud, Eric</td>
<td>257</td>
</tr>
<tr>
<td>Rinaldi, Bibo C.</td>
<td>165, 180</td>
</tr>
<tr>
<td>Ritou, Mathieu</td>
<td>145</td>
</tr>
<tr>
<td>Rocchetti, Roberto</td>
<td>86</td>
</tr>
<tr>
<td>Rodríguez Moglia</td>
<td>112</td>
</tr>
<tr>
<td>Rodriguez, David Javier Castro</td>
<td>167</td>
</tr>
<tr>
<td>Rodríguez, José Reinaldo Poma</td>
<td>167</td>
</tr>
<tr>
<td>Rodriguez, Jorge</td>
<td>15</td>
</tr>
<tr>
<td>Rojas, Adrian Alberto</td>
<td>92</td>
</tr>
<tr>
<td>Romano, Giovanni</td>
<td>49</td>
</tr>
<tr>
<td>Rombach, Katharina</td>
<td>38, 86</td>
</tr>
<tr>
<td>Rossouw, Donatien</td>
<td>60</td>
</tr>
<tr>
<td>Rousseau, Jean-Marc</td>
<td>56</td>
</tr>
<tr>
<td>Ruben, 244</td>
<td></td>
</tr>
<tr>
<td>Ruddle, Austin R.</td>
<td>136, 148</td>
</tr>
<tr>
<td>Russell, Pavel</td>
<td>116</td>
</tr>
<tr>
<td>Ruas, Milan</td>
<td>209</td>
</tr>
<tr>
<td>Ruex, Patrick</td>
<td>198</td>
</tr>
<tr>
<td>Ryeng, Einis Olausen</td>
<td>200</td>
</tr>
<tr>
<td>Ryman, Joanna</td>
<td>144</td>
</tr>
<tr>
<td>Ryu, Seonghyoun</td>
<td>206</td>
</tr>
<tr>
<td>Sánchez, Ana</td>
<td>206, 251</td>
</tr>
<tr>
<td>Sánchez-Silva, Mauricio</td>
<td>111</td>
</tr>
<tr>
<td>Sbhajoo, Gerd</td>
<td>148</td>
</tr>
<tr>
<td>Sahath, Frank</td>
<td>137</td>
</tr>
<tr>
<td>Saintis, Laurent</td>
<td>105, 135</td>
</tr>
<tr>
<td>Salak, Mohamed</td>
<td>196</td>
</tr>
<tr>
<td>Salvatori, Pietro</td>
<td>158</td>
</tr>
<tr>
<td>Salsi, Oliver</td>
<td>114, 140</td>
</tr>
<tr>
<td>Samo, Bradly</td>
<td>63</td>
</tr>
<tr>
<td>Sang, Marc</td>
<td>150</td>
</tr>
<tr>
<td>Samavini, Giovanni</td>
<td>46, 121, 157, 224, 238</td>
</tr>
<tr>
<td>Santamarins-Araiza, Mónica</td>
<td>98</td>
</tr>
<tr>
<td>Sancante, João Mateus</td>
<td>167</td>
</tr>
<tr>
<td>Santi, Ditas</td>
<td>236</td>
</tr>
<tr>
<td>Sas, Gabriel</td>
<td>81, 98</td>
</tr>
<tr>
<td>Sase, Insaf</td>
<td>101</td>
</tr>
<tr>
<td>Satoiras, Yupak</td>
<td>49, 151</td>
</tr>
<tr>
<td>Saubatts, Antans</td>
<td>137</td>
</tr>
<tr>
<td>Savin, Oliavim</td>
<td>239</td>
</tr>
<tr>
<td>Sayad, Khalid</td>
<td>150</td>
</tr>
<tr>
<td>Scagninello, Oscar</td>
<td>168, 243</td>
</tr>
<tr>
<td>Scarf, Philip</td>
<td>19, 231</td>
</tr>
<tr>
<td>Schab, Hendrik</td>
<td>42</td>
</tr>
<tr>
<td>Schaffler, Lena</td>
<td>68, 211</td>
</tr>
<tr>
<td>Schon, Walter</td>
<td>196</td>
</tr>
<tr>
<td>Schaper, Martin</td>
<td>209</td>
</tr>
<tr>
<td>Schauer, Stefan</td>
<td>158</td>
</tr>
<tr>
<td>Schuette, Nora</td>
<td>187</td>
</tr>
<tr>
<td>Schlöder, Adriana Miralles</td>
<td>253</td>
</tr>
<tr>
<td>Schmidt, Benedikt</td>
<td>167</td>
</tr>
<tr>
<td>Schneider, Montiz</td>
<td>40</td>
</tr>
<tr>
<td>Schertl, Frank</td>
<td>205</td>
</tr>
<tr>
<td>Scholz, Tobias</td>
<td>187</td>
</tr>
<tr>
<td>Schott, Lucas</td>
<td>237</td>
</tr>
<tr>
<td>Schrenk, Mario</td>
<td>142</td>
</tr>
<tr>
<td>Schwierz, Niklas</td>
<td>128</td>
</tr>
<tr>
<td>Sciambet, Antonio</td>
<td>49</td>
</tr>
<tr>
<td>Seil, Peter</td>
<td>198</td>
</tr>
<tr>
<td>Seger, Andreas</td>
<td>98</td>
</tr>
<tr>
<td>Selvik, Jon To mmerle</td>
<td>54</td>
</tr>
<tr>
<td>Selz, Hans Peter</td>
<td>49</td>
</tr>
<tr>
<td>Seltm, Guenoet</td>
<td>51</td>
</tr>
<tr>
<td>Setola, Roberto</td>
<td>140</td>
</tr>
<tr>
<td>Setunge, Suzieva</td>
<td>151</td>
</tr>
<tr>
<td>Seyedi, Hamed Nejad-Husseiniun</td>
<td>3</td>
</tr>
<tr>
<td>Sfierzuza, Giuseppe</td>
<td>175, 176</td>
</tr>
<tr>
<td>Shafiee, Mahmood</td>
<td>144</td>
</tr>
<tr>
<td>Shafiei, Neda</td>
<td>51</td>
</tr>
<tr>
<td>Shahidi, Fereisbih Jafari</td>
<td>98</td>
</tr>
<tr>
<td>Shalim, Durabli</td>
<td>217</td>
</tr>
<tr>
<td>Shahrokhi, Ara</td>
<td>185</td>
</tr>
<tr>
<td>Shao, Xiaoyan</td>
<td>124</td>
</tr>
<tr>
<td>Sharif, A.</td>
<td>258</td>
</tr>
<tr>
<td>Sharma, Neetha</td>
<td>29</td>
</tr>
<tr>
<td>Shi, Jian</td>
<td>26</td>
</tr>
<tr>
<td>Shige Yee</td>
<td>8</td>
</tr>
<tr>
<td>Shin, Ji Hyun</td>
<td>24</td>
</tr>
<tr>
<td>Shin, Sung-Min</td>
<td>62</td>
</tr>
<tr>
<td>Shu, Xiqing</td>
<td>186</td>
</tr>
<tr>
<td>Shulka, Amirag</td>
<td>38</td>
</tr>
<tr>
<td>Si, Shubin</td>
<td>27, 109</td>
</tr>
<tr>
<td>Stadat, Ali</td>
<td>193</td>
</tr>
<tr>
<td>Sick, Philipp</td>
<td>151</td>
</tr>
<tr>
<td>Sieg-Zieba, Sophie</td>
<td>34</td>
</tr>
<tr>
<td>Sigmundstad, Jose Nicolai</td>
<td>40</td>
</tr>
<tr>
<td>Silva, Alexisi Julio</td>
<td>226</td>
</tr>
<tr>
<td>Silva, André Luiz de Oliveira e</td>
<td>231</td>
</tr>
<tr>
<td>Silva, Gabriel San Martin</td>
<td>44</td>
</tr>
<tr>
<td>Silva, Lucas Borgos Leda da</td>
<td>67, 141</td>
</tr>
<tr>
<td>Silva, Renan Farcari da</td>
<td>152, 184</td>
</tr>
<tr>
<td>Simensen, John Eldar</td>
<td>115</td>
</tr>
<tr>
<td>Simexu-Aahzi, Zineb</td>
<td>95, 119</td>
</tr>
<tr>
<td>Simon, Lucik</td>
<td>33</td>
</tr>
<tr>
<td>Simone, L. De</td>
<td>227</td>
</tr>
<tr>
<td>Sini, Silvia</td>
<td>121</td>
</tr>
<tr>
<td>Sinias, George</td>
<td>79</td>
</tr>
<tr>
<td>Sisokos, Efthoris</td>
<td>226, 242</td>
</tr>
<tr>
<td>Situ, Corrado Delle</td>
<td>222</td>
</tr>
<tr>
<td>Skjermo, Jo</td>
<td>127</td>
</tr>
<tr>
<td>Skothild, Garikov</td>
<td>212, 259</td>
</tr>
<tr>
<td>Skogstad, Martin R.</td>
<td>187</td>
</tr>
<tr>
<td>Slater, David H.</td>
<td>32</td>
</tr>
<tr>
<td>Slotnick, Yoav</td>
<td>234</td>
</tr>
<tr>
<td>Sobriarq, Jeremy</td>
<td>14</td>
</tr>
<tr>
<td>Sommerregger, Lukas</td>
<td>133</td>
</tr>
<tr>
<td>Song, Mengheu</td>
<td>162</td>
</tr>
<tr>
<td>Song, Ya</td>
<td>45</td>
</tr>
<tr>
<td>Sorlini, Achille</td>
<td>79</td>
</tr>
<tr>
<td>Soual, Sara</td>
<td>240</td>
</tr>
<tr>
<td>Souami, Yani</td>
<td>76</td>
</tr>
<tr>
<td>Souaidy, Charles-Pierre EI</td>
<td>111</td>
</tr>
<tr>
<td>Souam, Hider S.</td>
<td>96</td>
</tr>
<tr>
<td>Souza, Gilberto Francisco Martha de</td>
<td>132, 184, 226</td>
</tr>
<tr>
<td>Spadari, Matteo</td>
<td>50, 226, 242</td>
</tr>
<tr>
<td>Spear, Seymour M.</td>
<td>130, 229</td>
</tr>
<tr>
<td>Spiegler, Virginia</td>
<td>224</td>
</tr>
<tr>
<td>Spieker, H.</td>
<td>258</td>
</tr>
<tr>
<td>Sprouge, John</td>
<td>85</td>
</tr>
<tr>
<td>Stephanie</td>
<td>152</td>
</tr>
<tr>
<td>Stårvold, Tom</td>
<td>194</td>
</tr>
<tr>
<td>Stamm, Jurgen</td>
<td>126</td>
</tr>
</tbody>
</table>
Stamp, David 66
Stavland, Brynild 96
Stecconi, Alessandro 73, 74, 176
Steen, Riana 38
Stefano, Ricci 129
Stegmaier, Raul 53, 220
Steinhalk, Armin 41
Sterne, Lillian Karina 234
Stenhammer, Hego C. 110
Stenerud, Edward 226
Stoelinga, Marielle 51
Stojadinovic, Bozidar 103
Stolz, Alexander 68, 211, 234
Strange, Espen 168, 169
Straub, Daniel 161, 191, 246
Strazzari, Carolina 211
Stresser, Aude 148
Sturm, Carolin 215
Sultana, Sharmin 32
Sun, Mu-Xia 216
Sun, Tianqi 53
Sung, Shao-Chin 197
Sylvain, Girard 60
Takahashi, Natsumi 197
Tamssaouet, Ferhat 21
Tanaka, Yoichi 62
Tang, Tao 42
Tanggu, Christian 143, 228, 241
Tanusso, Scarlett 142
Tarrisse, Serkan 151
Tapia, Lauren 220
Taranum Pathikar 3
Trattner, Albin 259
Tatiana, Timofeava 90
Tay, Zhi Yong 254
Taylor, J. Robert 165
Tešcharovská-Cislák, Barbara 166
Teodosiou-Filho, Alberto Magno 251
Termin, Thomas 39
Thio-Storm 5
Theodorakos, Gerasimos 188
Thieme, Christopher A. 174
Thierry, Yalamas 60
Thom, S. 93
Thomas, Davide 4
Thomas, Catherine 25
Thor Ove Holmqvist 9
Tiede, Khawola 180
Timmermans, Mike 250
Tinoco, Joaquim 81
Tóth, Silvia 16, 177, 178, 249
Tohman, Juha-Pekka 182
Tomaszewski, Justyna 26, 121, 152
Tomini, Paolo 49
Tompits, Hans 208
Topk, Abhimanyu 154
Tordeux, Antoine 223
Tormos, Frank Sil 18, 142
Tormos, José Sanchez 149
Tormos-Ayres, G. A. 183
Travascio, Lidia 113
Trinchini, Cristian 70
Trnka, Marian 209
Tranco, Paolo 221
Tryubashevy, Dmitry 139
Tu, Ya 44
Tubis, Agnieszka A. 184
Tognoli, Alessandro 210
Tuma, Zdenek 234
Turan, Osman 56
Turgis, Fabien 153
Tyluty, Lukas 209
Uggenti, A. C. 71
Uguzzon, Giovanni 31
Uhlmann, E. 93
Ullberg, Adrian 98
Umarov, Jevgeni Ignaas Airapunka 179
Ustun, Federico 70
Utans, Andrej 137
Utra, Ingrid B. 174
V. Popolo 255
Victor 244
Vaag, Jonas R. 37
Valery, Lesnykh 90
Vallertondra, Maria Rosaria 222
Valla, Susana Selleri 250
Vamanu, Bogdan 157
Vassek, Radvan 39
Vato, Ji m. 10, 53, 125, 146, 245
Vezzana, Fabrizio 185
Viedova, Matteo D. L. Dalla 114, 180
Viedova, Matteo Davide Lorenzo Dalla 113
Veie, Johannes 48
Viana, Francisco Filipe Cunha Lima 141, 214
Vidalic, Julien 65
Villal, Kanet 11
Vignolo, Emanuele 166
Vignoli, Giuseppe 254
Vilchez, José Sanchez 149
Villameva, J. F. 251
Vinage, Alexandre Gomes 129
Vincent, Chapurlet 256
Vinnen, Jan-Erik 41
Vitr, Zdenek 208
Visser, Krige 22, 72
Vittori, Miro 73
Vivese, Pablo 53, 99, 163
Vogelbacher, Georg 211
Vos, Alexandre 155
Voula, Angelica 113
Vu, Hai Canh 23, 34
Vu, Hai-Chinh 34
Wakayama, Kenro 138
Waldl, Ahmed 7
Wang, Dong 78
Wang, Feng 230
Wang, Honghui 124
Wang, Juan 107
Wang, Luohaoji 230
Wang, Qing-Wu 85
Wang, Qiuyi 27
Wang, Shaoping 26, 232
Wang, Wei 63
Wang, Xiaolin 94
Wang, Yan 19, 53, 108
Wang, Yamei 22
Wang, Yumioc 230
Waseem, Abdul 68
Wassenhove, Van 37
Wei, Qian 85
Wei, Qian 85
Wei, Shijie 188
Wei, Zhaosuan 68
Wenningberg, Lars Andreas 147
Werhoczka-Wojciechowska, Sylvia 224
Wieker, Kai 22
Wigum, Jan Peter 127
Wilde, Maria Westberg 98
Wilson, Simon 145
Witte, Dudion 40, 166
Wittwer, P. 93
Wisch, Marta 121
Wild, Marta S. 41
Wol, Kai-Dietrich 39, 166
Wong, Hongdiao 19, 53, 108
Author Index

Wu, Hui 216
Wu, Jing 106, 119, 131
Wu, Raphael 121
Wu, Sa 28
Wu, Shaomin 224
Wu, Shaozi 235
Wu, Xiangwei 201
Wumaierjiang, Muketaw 63

Xia, Tangbin 45
Xiahou, Tangfan 245
Xiao, Yiyong 64, 154, 233, 244
Xiaojian Yi 8
Xie, Haiwei 43
Xie, Min 94, 237
Xin, Zhishou 232
Xu, Yun 34
Xuanjiao Du 8

Y
Yalamas, T. 248
Yan, Fei 42, 100
Yan, Kai 13
Yan, Rundong 177, 178, 186, 210
Yang, Chun 124
Yang, Guisan 250
Yang, Wenshan 186
Yang, Xue 85
Yang, Yiming 100
Yang, Yong 104
Yao, Zemin 104
Yarashuri, Karthik 247
Yelis, Marina 198
Yi, Xiaojian 188
Yu, Zhoei 106
Yin, Jiapi 224
Yin, Mingang 245
Yin, Shun 146
Ylomen, Marja 233
You, Silan 88, 110
Yu, Qian 13
Yue, Longfei 245
Yuge, Takeshi 197
Yuhang Cui 8
Yusta, Jose M. 138

Z
Zaba, Pavel 192
Zains, Dralkarmain 69
Zaitseva, Elena 122, 198
Zeller, Marc 43
Zeng, Zhiqun 150, 170, 227
Zhang Lin 6
Zhang, Aibo 237
Zhang, Chun 232
Zhang, Chen 199
Zhang, Dangcheng 236
Zhang, Jing 165
Zhang, Jiusi 146
Zhang, Labin 230
Zhang, Xing 46
Zhang, Pengbo 188
Zhang, Shipe 108
Zhang, Weijian 85
Zhang, Xinrui 78
Zhang, Xixion 119, 162
Zhang, Yingqian 45
Zhang, Yue 64, 154, 233, 244
Zhao, Boyang 44
Zhao, Qian 91
Zhao, Runze 244
Zhao, Yan 140
Zhao, Yimin 20
Zhong, Jiandong 235
Zhou, Dong 19, 53, 118
Zhou, Qidi 53, 108
Zhou, Shenghuan 64, 154, 233, 244
Zhou, Shuaiqian 260
Zhou, Xiangyu 85
Zhou, Zhenhui 120
Zhu, Deming 81
Zhu, Jamin 49
Zhu, Jiaxing 91
Zhu, Wenjin 28, 109
Ziaja, Marcin 26, 121, 152
Zimprich, Sebastian 215
Zio, Enrico 163, 168, 190, 201, 210, 243
Zou, Gao 88
Zohre Zakeri 92
Zoghbi, Marwa 182
Zunek, Arkadiusz 184
Zwolinski, Peggy 95